Рёберное ядро — различия между версиями
(Новая страница: «{{Определение| definition= '''Рёберное ядро''' графа <tex>G</tex> {{---}} это подграф графа <tex>G</tex>, порожд...») |
|||
| Строка 18: | Строка 18: | ||
(2) <tex>G</tex> имеет внешнее наименьшее вершинное покрытие. | (2) <tex>G</tex> имеет внешнее наименьшее вершинное покрытие. | ||
(3) каждое наименьшее вершинное покрытие для <tex>G</tex> является внешним. | (3) каждое наименьшее вершинное покрытие для <tex>G</tex> является внешним. | ||
| + | }} | ||
| + | ==Ребероне ядро в двудольном графе== | ||
| + | Здесь и далее будем рассматривать двудольный граф <tex>G</tex>, в котором обозначим <tex>S</tex> - множество вершин левой доли, <tex>T</tex> - множество вершин правой доли. | ||
| + | {{Определение | | ||
| + | definition= <tex>G</tex> {{---}} '''полунесводимый граф''', если <tex>G</tex> имеет ровно одно вершинное покрытие <tex>M</tex>, такое что или <tex>M \cap S</tex> или <tex>M \cap T</tex> {{---}} пусто | ||
| + | }} | ||
| + | {{Определение| | ||
| + | definition= | ||
| + | <tex>G</tex> {{---}} '''несводимый''' граф, если он имеет ровно два наименьших вершинных покрытия <tex>M_1</tex> и <tex>M_2</tex>, таких что либо <tex>M_1 \cap S \cup M_2 \cap T = \varnothing </tex>, либо <tex>M_2 \cap S \cup M_1 \cap T = \varnothing</tex> | ||
| + | }} | ||
| + | {{Определение| | ||
| + | definition= | ||
| + | <tex>G</tex> {{---}} '''сводимый граф''' если он не является ни полунесводимым, ни сводимым. | ||
| + | }} | ||
| + | {{Теорема| | ||
| + | statement= | ||
| + | <tex>G</tex> и его реберное ядро <tex>C_1(G)</tex> совпадают тогда и только тогда, когда <tex>G</tex> является двудольным и не является сводимым. | ||
}} | }} | ||
Версия 16:28, 11 января 2016
| Определение: |
| Рёберное ядро графа — это подграф графа , порожденный объединением таких независимых множеств , что , где — число вершинного покрытия. |
| Определение: |
| числом вершинного покрытия называется число вершин в наименьшем вершинном покрытии графа . |
Критерий существования реберного ядра
| Определение: |
| Наименьшее вершинное покрытие M графа G с множеством вершим V называется внешним, если для любого подмножества выполняется неравнство , где |
| Теорема: |
для произвольного графа следующие утверждения эквивалентны:
(1) имеет рёберное ядро. |
Ребероне ядро в двудольном графе
Здесь и далее будем рассматривать двудольный граф , в котором обозначим - множество вершин левой доли, - множество вершин правой доли.
| Определение: |
| — полунесводимый граф, если имеет ровно одно вершинное покрытие , такое что или или — пусто |
| Определение: |
| — несводимый граф, если он имеет ровно два наименьших вершинных покрытия и , таких что либо , либо |
| Определение: |
| — сводимый граф если он не является ни полунесводимым, ни сводимым. |
| Теорема: |
и его реберное ядро совпадают тогда и только тогда, когда является двудольным и не является сводимым. |