Модуль непрерывности функции — различия между версиями
(→Теорема о выпуклом модуле непрерывности) |
(→Модуль непрерывности функции) |
||
| Строка 102: | Строка 102: | ||
== Модуль непрерывности функции == | == Модуль непрерывности функции == | ||
Пусть <tex>f</tex> - функция, непрерывная на <tex>[a; b]</tex>. Пусть <tex>h \ge 0</tex>. Положим | Пусть <tex>f</tex> - функция, непрерывная на <tex>[a; b]</tex>. Пусть <tex>h \ge 0</tex>. Положим | ||
| − | :<tex>\omega(f, h) = \sup\limits_{|x'' - x'| \le h}|f(x'') - f(x')|</tex>. | + | :<tex>\omega(f, h) = \sup\limits_{|x'' - x'| \le h}\,|f(x'') - f(x')|</tex>. |
Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции <tex>f</tex>. | Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции <tex>f</tex>. | ||
Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции <tex>f</tex>: | Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции <tex>f</tex>: | ||
| − | :<tex>\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \ \forall h \ge 0</tex>. | + | :<tex>\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \qquad \forall h \ge 0</tex>. |
| − | Опеределим <tex>\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)} \omega^*(h)</tex>, где <tex>\Omega^*(f)</tex> - класс выпуклых мажорант функции <tex>f</tex> (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству). | + | Опеределим <tex>\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)}\,\omega^*(h)</tex>, где <tex>\Omega^*(f)</tex> - класс выпуклых мажорант функции <tex>f</tex> (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству). |
Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции <tex>f</tex>. | Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции <tex>f</tex>. | ||
По доказанной выше теореме получаем следующее следствие: | По доказанной выше теореме получаем следующее следствие: | ||
| − | :<tex>\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda)\omega(f, h) \ \forall\lambda, h \ge 0</tex>, а также: | + | :<tex>\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda)\omega(f, h) \qquad \forall\lambda, h \ge 0</tex>, а также: |
:<tex>\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)</tex> | :<tex>\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)</tex> | ||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] | ||
Версия 21:31, 20 ноября 2010
| Определение: |
Функция называется модулем непрерывности, если:
|
Содержание
Свойства модулей непрерывности
| Утверждение (свойство №1): |
верно |
| Доказательство ведется по индукции. Для неравенство тривиально. Пусть утверждение верно для . Тогда , ч. т. д. |
| Утверждение (свойство №2): |
верно |
|
Доказательство: . |
| Утверждение (свойство №3): |
Пусть для некоторой функции выполняются аксиомы 1 и 2 определения, и функция убывает. Тогда - модуль непрерывности. |
|
Видно, что треубется доказать только полуаддитивность. Т. к. , то . Тогда . |
| Утверждение (свойство №4): |
Пусть удовлетворяет аксиомам 1 и 2 определения и является выпуклой вверх. Тогда - модуль непрерывности. |
|
Докажем, опираясь на свойство 3. Покажем, что убывает. |
Примеры
По свойству четыре видно, что можно построить сколь угодно много модулей непрерывности. Например, является модулем непрерывности.
- функция возрастает.
- функция является выпуклой вверх.
Из этого факта следует неравенство
Теорема о выпуклом модуле непрерывности
Класс модулей непрерывности обозначим . Класс выпуклых вверх модулей непрерывности обозначим .
Важное значение имеет теорема о выпуклом модуле непрерывности, которая основывается на следующем факте:
| Утверждение: |
Пусть имеется семейство выпуклых функций . Тогда — также выпуклая функция. |
|
Требуется показать, что: Так как все функции семейства выпуклы вверх, то для любого верно:
Но по определению , следовательно,
|
| Теорема (о выпуклом модуле непрерывности): |
Пусть . Тогда существует такая, что
|
| Доказательство: |
|
По свойству 2 имеем для всех и . Обозначим , тогда . Перепишем равенство . Определим теперь функцию . Рассмотрим семейство функций . Каждая функция из этого семейства выпукла как линейная. Но тогда выпукла вверх по доказанному выше факту. Докажем теперь, что - модуль непрерывности. Действительно,
По свойству №2 модулей непрерывности . Рассматривая точные нижние грани обеих частей и используя определение функции , получим требуемые в условии теоремы неравенства. Итак, построенная нами функция является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. |
Модуль непрерывности функции
Пусть - функция, непрерывная на . Пусть . Положим
- .
Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции .
Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции :
- .
Опеределим , где - класс выпуклых мажорант функции (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству).
Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции .
По доказанной выше теореме получаем следующее следствие:
- , а также: