Упорядоченное множество — различия между версиями
Lephyora (обсуждение | вклад) |
Lephyora (обсуждение | вклад) |
||
| Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
| − | '''Упорядоченное множество''' представляет собой коллекцию элементов, каждому из которых присваивается определенный ключ, отвечающий за порядок этого элемента в множестве. | + | '''Упорядоченное множество''' <tex>Set</tex> представляет собой коллекцию элементов <tex>elem</tex>, каждому из которых присваивается определенный ключ <tex>key</tex>, отвечающий за порядок этого элемента в множестве. Бинарное отношение <tex>R</tex> на упорядоченном множестве <tex>Set</tex> обладает следующими свойствами: |
| + | * [[Антисимметричное отношение|Антисимметричность]]: <tex>\mathcal {8} x,y \in A \ (xRy \land yRx \Rightarrow x = y)</tex>; | ||
| + | * [[Транзитивное отношение|Транзитивность]]: <tex>\mathcal {8} x,y,z \in A \ (xRy \land yRz \Rightarrow xRz)</tex>. | ||
}} | }} | ||
| + | Пустое множество <tex> \varnothing </tex> считается упорядоченным. | ||
| + | |||
==Операции над упорядоченным множеством== | ==Операции над упорядоченным множеством== | ||
Версия 18:44, 29 мая 2015
| Определение: |
| Упорядоченное множество представляет собой коллекцию элементов , каждому из которых присваивается определенный ключ , отвечающий за порядок этого элемента в множестве. Бинарное отношение на упорядоченном множестве обладает следующими свойствами: |
Пустое множество считается упорядоченным.
Содержание
Операции над упорядоченным множеством
Над упорядоченным множеством заданы следующие операции:
Insert
Функция добавляет заданный элемент , имеющий ключ , в подходящее место множества (сохраняя свойство упорядоченности).
Delete
Функция удаляет элемент, имеющий ключ (сохраняя свойство упорядоченности).
Search
Функция , которая получает на вход искомый ключ , и возвращает указатель на элемент множества или специальное значение , если такого элемента нет.
Minimum
Функция возвращает указатель на минимальный элемент множества .
Maximum
Функция возвращает указатель на максимальный элемент множества .
Predecessor
Функция возвращает указатель на элемент, стоящий перед элементом множества .
Successor
Функция возвращает указатель на элемент, стоящий после элемента множества .
Пример упорядоченного множества:
Примерами упорядоченных множеств могут служить такие структуры как деревья.
Литература
1. Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5