Теорема Понтрягина-Куратовского — различия между версиями
| Строка 41: | Строка 41: | ||
| − | Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. | + | Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v] \ {u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. |
{{Определение | {{Определение | ||
|definition = | |definition = | ||
| Строка 57: | Строка 57: | ||
б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | ||
}} | }} | ||
| − | {{ | + | {{Определение |
|definition = | |definition = | ||
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | ||
Версия 06:57, 20 октября 2010
| Теорема: | ||||||||||||||
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . | ||||||||||||||
| Доказательство: | ||||||||||||||
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен. G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен. G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1) Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2) Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) Таким образом мы получили укладку графа на плоскости, что невозможно.
В G' существует цикл, содержащий вершины a и bПусть и лежат в одном блоке графа .
Заметим, что в графе рёбер меньше, чем в графе . Действительно, вместо ребра в есть ребро и часть рёбер из графа осталась в графе . Аналогично, в графе рёбер меньше, чем в графе . Отметим, что опять вершина представлена на плоскости в двух экземплярах. Очевидно, добавление ребра не меняет планарности графа . Склеим оба вхождения вершины точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6). Сотрем затем ранее добавленные ребра и . В результате мы получим укладку графа на плоскости, что невозможно. Утверждение доказано.
В силу связности графа для любой внешней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
В силу связности графа для любой внутренней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
Будем говорить, что внешняя (внутренняя) часть встречает цикл в своих точках прикрепления к циклу . Шаблон:Утверждение 5
Аналогично можно ввести понятие -разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл , вообще говоря, более чем в двух точках, но не менее чем в двух точках. Шаблон:Утверждение 6 Шаблон:Утверждение 7 Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин и является -разделяющей. 2. Пусть пара вершин и не является -разделяющей. 2.1. Пусть и лежат на , т.е. и (рис. 2). 2.1.1 Пусть лежит на . 2.1.2. Пусть . 2.1.3. Пусть лежит на . Теперь рассмотрим случаи, когда хотя бы одна из вершин и не лежит на . Без ограничения общности будем считать, что это вершина , т.е (поскольку лежит на ). 2.2. Пусть . 2.2.1. Пусть лежит на . 2.2.2. Пусть . 2.2.3. Пусть лежит на . 2.3. Пусть (рис. 9). 2.3.1. Пусть цепи и имеют более одной общей точки. 2.3.2. Пусть цепи и имеют точно одну общую точку . | ||||||||||||||
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы





