Теорема Понтрягина-Куратовского — различия между версиями
| Строка 20: | Строка 20: | ||
[[Файл:p-k.3.png|thumb|right|рис. 3]] | [[Файл:p-k.3.png|thumb|right|рис. 3]] | ||
Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | ||
| + | <br/> <br/> | ||
| + | Пусть <tex> e = ab </tex> - произвольное ребро графа <tex> G </tex>, <tex> G' = G - e </tex>. | ||
| + | # граф <tex> G' </tex> планарен в силу минимальности графа <tex> G </tex>. | ||
| + | # граф <tex> G' </tex> связен в силу отсутствия в графе <tex> G </tex> мостов. | ||
| + | |||
| + | ==== В G' существует цикл, содержащий вершины a и b ==== | ||
| + | Пусть <tex> a </tex> и <tex> b </tex> лежат в одном блоке <tex> B </tex> графа <tex> G' </tex>. | ||
| + | # Если <tex> |VB| >= 3 </tex>, то существует цикл графа G', содержащий вершины <tex> a </tex> и <tex> b </tex>. | ||
| + | # Если <tex> |VB| = 2 </tex>, то в <tex> B </tex> имеется ребро <tex> e' = ab </tex>, но тогда в <tex> G </tex> имеются кратные рёбра <tex> e </tex> и <tex> e' </tex>, что невозможно. | ||
| + | # Если вершины <tex> a </tex> и <tex> b </tex> лежат в разных блоках графа <tex> G' </tex>, что существует точка сочленения <tex> v </tex>, принадлежащая любой простой (a, b)-цепи графа <tex> G' </tex>. Через <tex> G'_1 </tex> обозначим подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами компоненты связности графа <tex> G' - v </tex>, содержащей <tex> a </tex>, а через <tex> G'_2 </tex> - подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами остальных компонент связности графа <tEx> G' - v </tex> (в этом множестве лежит вершина <tex> b </tex>). Пусть <tex> G''_1 = G'_1 + e_1 </tex>, где <tex> e1 = vb </tex> - новое ребро (рис. 4) | ||
| + | [[Файл:p-k.4.png|thumb|right|рис. 4]] | ||
| + | Заметим, что в графе <tex> G''_1 </tex> рёбер меньше, чем в графе <tex> G </tex>. Действительно, вместо ребра <tex> e </tex> в <tex> G''_1 </tex> есть ребро <tex> e1 </tex> и часть рёбер из графа <tex> G </tex> осталась в графе <tex> G''_2 </tex>. Аналогично, в графе <tex> G''_2 </tex> рёбер меньше, чем в графе <tex> G </tex>. <br/> | ||
| + | Покажем, далее, что в графе <tex> G''_1 </tex> и, аналогично, в графе <tex> G''_2 </tex> нет подграфов, гомеоморфных <tex> K_5 </tex> или <tex> K_{3,3} </tex>. Действительно, если в <tex> G''_1 </tex> имеется такой подграф, то в этом подграфе присутствует вновь присоединенное ребро, но это ребро <tex> e1 </tex> можно заменить на цепь <br/> | ||
| + | a -> b -> ... -> v, <br/> взяв некоторую простую (b, v)-цепь <tex> P_2 </tex> в графе <tex> G'_2 </tex>. Следовательно, мы получили подграф в <tex> G </tex>, гомеоморфный <tex> К_5 </tex> или <tex> К_{3,3} </tex>, что невозможно. <br/> | ||
| + | Теперь в силу минимальности графа <tex> G </tex> графы <tex> G''_1 </tex> и <tex> G''_2 </tex> планарны. Возьмем укладку графа <tex> G''_1 </tex> на плоскости такую, что ребро <tex> е1 = av </tex> лежит на границе внешней грани. Во внешней грани графа <tex> G''_1 </tex> возьмем укладку графа <tex> G''_2 </tex> такую, что ребро <tex> е2 = vb </tex> лежит па границе внешпей грани (рис. 5). | ||
| + | [[Файл:p-k.5.png|thumb|right|рис. 5]] | ||
| + | Отметим, что опять вершина <tex> v </tex> представлена на плоскости в двух экземплярах. Очевидно, добавление ребра <tex> е = ab </tex> не меняет планарности графа <tex> G''_1 U G''_2</tex>. Склеим оба вхождения вершины <tex> v </tex> точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6). | ||
| + | [[Файл:p-k.6.png|thumb|right|рис. 6]] | ||
| + | Сотрем затем ранее добавленные ребра <tex> е1 </tex> и <tex> е2 </tex>. В результате мы получим укладку графа <tex> G </tex> на плоскости, что невозможно. Утверждение доказано. | ||
Версия 06:56, 20 октября 2010
| Теорема: | ||||||||||||
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . | ||||||||||||
| Доказательство: | ||||||||||||
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен. G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен. G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1) Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2) Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) Таким образом мы получили укладку графа на плоскости, что невозможно.
В G' существует цикл, содержащий вершины a и bПусть и лежат в одном блоке графа .
Заметим, что в графе рёбер меньше, чем в графе . Действительно, вместо ребра в есть ребро и часть рёбер из графа осталась в графе . Аналогично, в графе рёбер меньше, чем в графе . Отметим, что опять вершина представлена на плоскости в двух экземплярах. Очевидно, добавление ребра не меняет планарности графа . Склеим оба вхождения вершины точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6). Сотрем затем ранее добавленные ребра и . В результате мы получим укладку графа на плоскости, что невозможно. Утверждение доказано.
В силу связности графа для любой внешней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
В силу связности графа для любой внутренней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
Будем говорить, что внешняя (внутренняя) часть встречает цикл в своих точках прикрепления к циклу . Шаблон:Утверждение 5
Аналогично можно ввести понятие -разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл , вообще говоря, более чем в двух точках, но не менее чем в двух точках. Шаблон:Утверждение 6 Шаблон:Утверждение 7 Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин и является -разделяющей. 2. Пусть пара вершин и не является -разделяющей. 2.1. Пусть и лежат на , т.е. и (рис. 2). 2.1.1 Пусть лежит на . 2.1.2. Пусть . 2.1.3. Пусть лежит на . Теперь рассмотрим случаи, когда хотя бы одна из вершин и не лежит на . Без ограничения общности будем считать, что это вершина , т.е (поскольку лежит на ). 2.2. Пусть . 2.2.1. Пусть лежит на . 2.2.2. Пусть . 2.2.3. Пусть лежит на . 2.3. Пусть (рис. 9). 2.3.1. Пусть цепи и имеют более одной общей точки. 2.3.2. Пусть цепи и имеют точно одну общую точку . | ||||||||||||
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы





