Теорема Понтрягина-Куратовского — различия между версиями
| Строка 23: | Строка 23: | ||
Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. | Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>. | Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>. | ||
}} | }} | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешними компонентами будем называть компоненты связности внешнего графа. | Внешними компонентами будем называть компоненты связности внешнего графа. | ||
}} | }} | ||
В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешними частями будем называть: | Внешними частями будем называть: | ||
| Строка 38: | Строка 38: | ||
б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | ||
}} | }} | ||
| − | {{Определиние | + | {{Определиние |
|definition = | |definition = | ||
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | ||
}} | }} | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внутренними компонентами будем называть компоненты связности внутреннего графа. | Внутренними компонентами будем называть компоненты связности внутреннего графа. | ||
}} | }} | ||
В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внутренними частями будем называть: | Внутренними частями будем называть: | ||
| Строка 54: | Строка 54: | ||
}} | }} | ||
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>. | Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>. | ||
| − | {{Утверждение 5 | + | {{Утверждение 5 |
|statement = | |statement = | ||
Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>. | Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>. | ||
| Строка 62: | Строка 62: | ||
Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>. | Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>. | ||
}} | }} | ||
| − | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>. | Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>. | ||
}} | }} | ||
Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках. | Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках. | ||
| − | {{Утверждение 6 | + | {{Утверждение 6 |
|statement = | |statement = | ||
Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть. | Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть. | ||
| Строка 73: | Строка 73: | ||
Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно. | Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно. | ||
}} | }} | ||
| − | {{Утверждение 7 | + | {{Утверждение 7 |
|statement = | |statement = | ||
Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей. | Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей. | ||
Версия 06:54, 20 октября 2010
| Теорема: | ||||||||||||
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . | ||||||||||||
| Доказательство: | ||||||||||||
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен. G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен. G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1) Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2) Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) Таким образом мы получили укладку графа на плоскости, что невозможно.
В силу связности графа для любой внешней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
В силу связности графа для любой внутренней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
Будем говорить, что внешняя (внутренняя) часть встречает цикл в своих точках прикрепления к циклу . Шаблон:Утверждение 5
Аналогично можно ввести понятие -разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл , вообще говоря, более чем в двух точках, но не менее чем в двух точках. Шаблон:Утверждение 6 Шаблон:Утверждение 7 Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин и является -разделяющей. 2. Пусть пара вершин и не является -разделяющей. 2.1. Пусть и лежат на , т.е. и (рис. 2). 2.1.1 Пусть лежит на . 2.1.2. Пусть . 2.1.3. Пусть лежит на . Теперь рассмотрим случаи, когда хотя бы одна из вершин и не лежит на . Без ограничения общности будем считать, что это вершина , т.е (поскольку лежит на ). 2.2. Пусть . 2.2.1. Пусть лежит на . 2.2.2. Пусть . 2.2.3. Пусть лежит на . 2.3. Пусть (рис. 9). 2.3.1. Пусть цепи и имеют более одной общей точки. 2.3.2. Пусть цепи и имеют точно одну общую точку . | ||||||||||||
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы


