Участник:Shovkoplyas Grigory — различия между версиями
| Строка 4: | Строка 4: | ||
== Алгоритм == | == Алгоритм == | ||
Пусть <tex> a </tex> {{---}} отсортированный массив чисел из <tex> n </tex> чисел, <tex> x </tex> {{---}} значение, которое нужно найти. Поиск происходит подобно [[Целочисленный двоичный поиск|двоичному поиску]], но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что <tex> x </tex> лежит между <tex> a_l </tex> и <tex> a_r </tex>, то следующая проверка выполняется примерно на расстоянии <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} \cdot</tex> <tex> (r - l) </tex> от <tex> l </tex>. | Пусть <tex> a </tex> {{---}} отсортированный массив чисел из <tex> n </tex> чисел, <tex> x </tex> {{---}} значение, которое нужно найти. Поиск происходит подобно [[Целочисленный двоичный поиск|двоичному поиску]], но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что <tex> x </tex> лежит между <tex> a_l </tex> и <tex> a_r </tex>, то следующая проверка выполняется примерно на расстоянии <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} \cdot</tex> <tex> (r - l) </tex> от <tex> l </tex>. | ||
| + | Формула для разделительного элемента <tex> m </tex> получается из следующего уравнения: <tex dpi = "170"> \frac{x - a_l}{m - l} = \frac{a_r - a_l}{r - l} </tex>, | ||
| + | из которого явно следует, что <tex> m = l + </tex> <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} \cdot</tex> <tex> (r - l) </tex>. На рисунке внизу показано, из каких соображений берется такая оценка. Интерполяционный поиск основывается на том, что наш массив представляет из себя что-то на подобии арифметической прогрессии. | ||
[[Файл:interpolation_search_from_gshark.png|450px|center|Размещение разделительного элемента]] | [[Файл:interpolation_search_from_gshark.png|450px|center|Размещение разделительного элемента]] | ||
Версия 17:57, 15 июня 2014
Содержание
Идея
Рассмотрим задачу: найти слово в словаре. Если оно начинается на букву "А", то никто не будет искать его в середине, а откроет словарь ближе к началу. В чём разница между алгоритмом человека и другими? Отличие заключается в том, что алгоритмы вроде двоичного поиска не делают различий между "немного больше" и "существенно больше".
Алгоритм
Пусть — отсортированный массив чисел из чисел, — значение, которое нужно найти. Поиск происходит подобно двоичному поиску, но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что лежит между и , то следующая проверка выполняется примерно на расстоянии от . Формула для разделительного элемента получается из следующего уравнения: , из которого явно следует, что . На рисунке внизу показано, из каких соображений берется такая оценка. Интерполяционный поиск основывается на том, что наш массив представляет из себя что-то на подобии арифметической прогрессии.
Псевдокод
function interpolationSearch(a : int[], key : int) // a должен быть отсортирован left = 0 // левая граница поиска (будем считать, что элементы массива нумеруются с нуля) right = a.length - 1 // правая граница поиска while a[left] key and key a[right] mid = left + (key - a[left]) / (a[right] - a[left]) * (right - left) // индекс элемента, с которым будем проводить сравнение if a[mid] == key return mid if a[mid] < key left = mid + 1 else right = mid - 1 if a[left] == key return left else return -1 // если такого элемента в массиве нет
Время работы
Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с до . То есть, после -ого шага количество проверяемых элементов уменьшается до . Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда . Из этого вытекает, что количество шагов, а значит, и время работы составляет .
При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до .
Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями и становится значительной только при очень больших . На практике при поиске в больших файлах оказывается выгодным на ранних стадиях применять интерполяционный поиск, а затем, когда диапазон существенно уменьшится, переходить к двоичному.
Литература
Д.Э. Кнут: Искусство программирования (том 3)
Wikipedia: Interpolation search
Wikipedia: Интерполирующий поиск