Фундаментальные циклы графа — различия между версиями
| Строка 10: | Строка 10: | ||
|proof = | |proof = | ||
Рассмотрим каркас T графа G и фундаментальные циклы <tex> C_1 ... C_{s} </tex> относительно каркаса T. В каждом из <tex> С_{i} </tex> есть ребро <tex>e_{i}</tex> которое принадлежит ровно одному из <tex> C_1 ... C_{s} </tex>. Поэтому сумма различных фундаментальных циклов относительно каркаса Т не является пустым графом, из чего следует, что <tex> C_1 ... C_{s} </tex> линейно независимы. | Рассмотрим каркас T графа G и фундаментальные циклы <tex> C_1 ... C_{s} </tex> относительно каркаса T. В каждом из <tex> С_{i} </tex> есть ребро <tex>e_{i}</tex> которое принадлежит ровно одному из <tex> C_1 ... C_{s} </tex>. Поэтому сумма различных фундаментальных циклов относительно каркаса Т не является пустым графом, из чего следует, что <tex> C_1 ... C_{s} </tex> линейно независимы. | ||
| − | Докажем, что любой цикл из циклического пространства графа G является суммой фундаментальных циклов. Пусть Z — цикл циклического пространства графа G, <tex> e_1 ... e_{k} </tex> ребра принадлежащие Z и не принадлежащие T. Рассмотрим граф <tex> F = Z \oplus C_1 \oplus ... \oplus C_{k} </tex>. Каждое из ребер <tex> e_{t} , t = 1,..,k </tex> встречается ровно в двух слагаемых — Z и <tex>C_{k}</tex>. Значит F содержит только ребра из T. Так как <tex> | + | Докажем, что любой цикл из циклического пространства графа G является суммой фундаментальных циклов. Пусть Z — цикл циклического пространства графа G, <tex> e_1 ... e_{k} </tex> ребра принадлежащие Z и не принадлежащие T. Рассмотрим граф <tex> F = Z \oplus C_1 \oplus ... \oplus C_{k} </tex>. Каждое из ребер <tex> e_{t} , t = 1,..,k </tex> встречается ровно в двух слагаемых — Z и <tex>C_{k}</tex>. Значит F содержит только ребра из T. Так как <tex> C_1 ... C_{k} </tex> простые циклы, то степени всех их вершин четны, степени вершин Z тоже четны по [[Циклическое пространство графа|лемме]], значит степени всех вершин F четны. Если F непустой граф то в F есть цикл, значит цикл есть и в T. Значит F пустой граф, откуда следует что <tex>Z = C_1 \oplus ... \oplus C_{k} </tex>. |
}} | }} | ||
Версия 23:48, 13 октября 2010
Определение
| Определение: |
| Рассмотрим каркас T графа G. — все ребра графа G которые не входят в каркас T. При добавлении образуется простой цикл . Семейство циклов называется фундаментальными циклами графа G относительно каркаса T |
Свойства
| Теорема: |
Множество всех фундаментальных циклов относительно любого каркаса T графа G образует базис циклического пространства этого графа. |
| Доказательство: |
|
Рассмотрим каркас T графа G и фундаментальные циклы относительно каркаса T. В каждом из есть ребро которое принадлежит ровно одному из . Поэтому сумма различных фундаментальных циклов относительно каркаса Т не является пустым графом, из чего следует, что линейно независимы. Докажем, что любой цикл из циклического пространства графа G является суммой фундаментальных циклов. Пусть Z — цикл циклического пространства графа G, ребра принадлежащие Z и не принадлежащие T. Рассмотрим граф . Каждое из ребер встречается ровно в двух слагаемых — Z и . Значит F содержит только ребра из T. Так как простые циклы, то степени всех их вершин четны, степени вершин Z тоже четны по лемме, значит степени всех вершин F четны. Если F непустой граф то в F есть цикл, значит цикл есть и в T. Значит F пустой граф, откуда следует что . |