Моноид — различия между версиями
Shersh (обсуждение | вклад) |
Shersh (обсуждение | вклад) |
||
| Строка 27: | Строка 27: | ||
Если <tex> S </tex> является подмножеством <tex> M </tex>, то отображение <tex> i </tex> называют '''естественным вложением''' (англ. ''natural injection''), и пишут <tex> i \colon S \hookrightarrow M </tex>. | Если <tex> S </tex> является подмножеством <tex> M </tex>, то отображение <tex> i </tex> называют '''естественным вложением''' (англ. ''natural injection''), и пишут <tex> i \colon S \hookrightarrow M </tex>. | ||
| − | [ | + | |
| + | == Ссылки == | ||
| + | * [http://www.proofwiki.org/wiki/Definition:Free_Monoid Proof Wiki {{---}} Free monoid] | ||
Версия 14:22, 6 ноября 2013
| Определение: |
Полугруппа называется моноидом, если в множестве существует элемент, нейтральный относительно операции полугруппы:
|
| Утверждение (О единственности нейтрального элемента): |
Нейтральный элемент в моноиде единственен. |
| Действительно, путь и — два нейтральных элемента. Тогда имеем: . |
Примеры
- Множество действительных чисел c операцией умножения или сложения (нейтральными элементами являются 1 и 0 соответственно).
- Множество строк из с операцией конкатенацией и нейтральным элементом — пустой строкой (обозначаемой ).
| Определение: |
| Гомоморфизмом моноидов (англ. monoid homomorphism) и называется отображение совместимое с операциями из и такое, что , а также . |
| Определение: |
| Свободным моноидом (англ. free monoid) над множеством называется моноид вместе с отображением при условии, что для любого моноида и для любых отображений существует единственный гомоморфизм моноидов такой, что . |
Это наглядно показано следующей картинкой. TODO: картинка
Если является подмножеством , то отображение называют естественным вложением (англ. natural injection), и пишут .