Куча Бродала-Окасаки — различия между версиями
(→getMin) |
|||
| Строка 42: | Строка 42: | ||
Создание и <tex>merge</tex> выполняются за <tex>O(1)</tex>, тогда <tex>insert</tex> работает за <tex>O(1)</tex>. | Создание и <tex>merge</tex> выполняются за <tex>O(1)</tex>, тогда <tex>insert</tex> работает за <tex>O(1)</tex>. | ||
=== getMin === | === getMin === | ||
| − | Выполняется просто, так как | + | Выполняется просто, так как BPQ хранит минимум. |
<pre> | <pre> | ||
getMin((x,q)) | getMin((x,q)) | ||
Версия 11:51, 11 июня 2013
Куча Бродала-Окасаки (англ. Brodal's and Okasaki's Priority Queue) - основана на использовании биномиальной кучи без каскадных ссылок, что позволяет делать за , добавлении минимального элемента, позволяет получать минимальный элемент за , и идеи Data-structural bootstrapping, позволяющей выполнить за . Удаление минимума работает за в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей.
Содержание
Структура
Используем идею, которую Тарьян и Буксбаум называют Data-structural bootstrapping.
Создадим структуру Bootstrapping Priority Queues, которая будет хранить пару из минимального элемента и приоритетную очередь. Элементами приоритетной очереди будут Bootstrapping Priority Queues упорядоченные по . Это можно записать так:
Куча из одного элемента будет выглядеть так
Данная структура не будет бесконечной, так как каждый раз в приоритетной очереди будет храниться на один элемент меньше, таким образом образуя иерархическую структуру. Каждое значение храниться в одном из значений .
Операции
Merge
Слияние выполняется выбором минимума из двух значений и добавлением в приоритетную очередь второго BPQ.
merge((x,q), (y,r))
if x<y
return (x, insert(q, (y,r)))
else
return (y, insert(r, (x,q)))
Здесь это добавление в приоритетную очередь работает за , тогда работает за .
Insert
Это создание нового BPQ и его с основным деревом.
insert((x,q), y) return merge((x,q), create(y))
Создание и выполняются за , тогда работает за .
getMin
Выполняется просто, так как BPQ хранит минимум.
getMin((x,q)) return x;
Очевидно, работает за
extractMin
Минимальный элемент хранится в верхнем BPQ, по этому его поиск не нужен. Требуется извлечение минимума из приоритетной очереди BPQ'ов.
extractMin((x,q)) ((y,r), t) = extractMin(q) return (y, merge(r, t))
Здесь — это функция, извлекающая минимальный элемент типа BPQ из приоритетной очереди, она возвращает - минимальный элемент типа BPQ и остаток от приоритетной очереди после извлечение минимума - . — функция, выполняющая слияние двух приоритетных очередей.
Возвращаем BPQ, где — новый минимальный элемент, и приоритетная очередь без элемента .
Так как и выполняются за , тогда выполняется за .