Интерполяционный поиск — различия между версиями
Gromak (обсуждение | вклад) |
Gromak (обсуждение | вклад) м |
||
| Строка 4: | Строка 4: | ||
== Алгоритм == | == Алгоритм == | ||
[[Файл:Search.jpg|thumb|300px|Нахождение разделительного элемента]] | [[Файл:Search.jpg|thumb|300px|Нахождение разделительного элемента]] | ||
| − | Пусть <tex> a </tex> {{---}} отсортированный массив чисел из <tex> n </tex> чисел, <tex> x </tex> {{---}} значение, которое нужно найти. Поиск происходит подобно [[Целочисленный двоичный поиск|двоичному поиску]], но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что <tex> x </tex> лежит между <tex> a_l </tex> и <tex> a_r </tex>, то следующая проверка выполняется примерно на расстоянии <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} </tex> от <tex> l </tex>. | + | Пусть <tex> a </tex> {{---}} отсортированный массив чисел из <tex> n </tex> чисел, <tex> x </tex> {{---}} значение, которое нужно найти. Поиск происходит подобно [[Целочисленный двоичный поиск|двоичному поиску]], но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что <tex> x </tex> лежит между <tex> a_l </tex> и <tex> a_r </tex>, то следующая проверка выполняется примерно на расстоянии <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} \cdot</tex> <tex> (r - l) </tex> от <tex> l </tex>. |
=== Псевдокод === | === Псевдокод === | ||
Версия 12:51, 17 мая 2012
Содержание
Идея
Рассмотрим задачу: найти слово в словаре. Если оно начинается на букву "А", то никто не будет искать его в середине, а откроет словарь ближе к началу. В чём разница между алгоритмом человека и другими? Отличие заключается в том, что алгоритмы вроде двоичного поиска не делают различий между "немного больше" и "существенно больше".
Алгоритм
Пусть — отсортированный массив чисел из чисел, — значение, которое нужно найти. Поиск происходит подобно двоичному поиску, но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что лежит между и , то следующая проверка выполняется примерно на расстоянии от .
Псевдокод
interpolationSearch(n, x):
l = 0; // левая граница поиска (будем считать, что элементы массива нумеруются с нуля)
r = n - 1; // правая граница поиска
while a[l] <= x && x <= a[r]
m = l + (x - a[l]) / (a[r] - a[l]) * (r - l); // элемент, с которым будем проводить сравнение
if a[m] == x
result = m;
if a[m] < x
l = m + 1;
else
r = m - 1;
if a[l] == x
result = l;
else
result = -1; // not found
Время работы
Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с до . То есть, после -ого шага количество проверяемых элементов уменьшается до . Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда . Из этого вытекает, что количество шагов, а значит, и время работы составляет .
При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до .
Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями и становится значительной только при очень больших . На практике при поиске в больших файлах оказывается выгодным на ранних стадиях применять интерполяционный поиск, а затем, когда диапазон существенно уменьшится, переходить к двоичному.
Литература
Д.Э. Кнут: Искусство программирования (том 3)
Wikipedia: Interpolation search
Wikipedia: Интерполирующий поиск