Хроматический многочлен — различия между версиями
System29a (обсуждение | вклад) (→Хроматический многочлен полного графа) |
System29a (обсуждение | вклад) (Перенёс определение в текст доказательства) |
||
| Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition=Пусть дан фиксированный граф <tex>G</tex> и фиксированное число красок <tex>x</tex>. Количество способов правильной <tex>x</tex>-раскраски графа <tex>G</tex> называется '''хроматическим многочленом'''. Обозначают <tex>P(G,x)</tex>. | |definition=Пусть дан фиксированный граф <tex>G</tex> и фиксированное число красок <tex>x</tex>. Количество способов правильной <tex>x</tex>-раскраски графа <tex>G</tex> называется '''хроматическим многочленом'''. Обозначают <tex>P(G,x)</tex>. | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
}} | }} | ||
| Строка 34: | Строка 29: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
| − | Пусть <tex>u</tex> и <tex>v</tex> - несмежные вершины графа <tex>G</tex>. Если <tex>G_1=G\cup uv</tex>, а <tex>G_2=G/uv</tex> , то <tex>P(G,x)=P(G_1,x)+P(G_2,x)</tex>. | + | Пусть <tex>u</tex> и <tex>v</tex> - несмежные вершины графа <tex>G</tex>. Если <tex>G_1=G\cup uv</tex>, а <tex>G_2=G/uv</tex> (стягивание ребра) , то <tex>P(G,x)=P(G_1,x)+P(G_2,x)</tex>. |
|proof= | |proof= | ||
| + | Напомним, что граф <tex>G/uv</tex> — граф, полученный из графа <tex>G</tex> стягиванием ребра <tex>uv</tex>, то есть у которого вершины <tex>u</tex> и <tex>v</tex> будут отождествлены и при этом будут отброшены все петли и кратность ребер будет сведена к единице. | ||
Рассмотрим все произвольные раскраски графа <tex>G</tex>. Рассмотрим те из них, при которых вершины <tex>u</tex> и <tex>v</tex> окрашены в разные цвета. Если добавить к графу <tex>G</tex> ребро <tex>uv</tex>, то они не изменятся, то есть останутся правильными. Рассмотрим раскраски, при которых <tex>u</tex> и <tex>v</tex> одного цвета. Все эти раскраски останутся правильными и для графа, полученного из <tex>G</tex> слиянием вершин <tex>u</tex> и <tex>v</tex>. | Рассмотрим все произвольные раскраски графа <tex>G</tex>. Рассмотрим те из них, при которых вершины <tex>u</tex> и <tex>v</tex> окрашены в разные цвета. Если добавить к графу <tex>G</tex> ребро <tex>uv</tex>, то они не изменятся, то есть останутся правильными. Рассмотрим раскраски, при которых <tex>u</tex> и <tex>v</tex> одного цвета. Все эти раскраски останутся правильными и для графа, полученного из <tex>G</tex> слиянием вершин <tex>u</tex> и <tex>v</tex>. | ||
}} | }} | ||
Версия 04:58, 11 января 2012
| Определение: |
| Пусть дан фиксированный граф и фиксированное число красок . Количество способов правильной -раскраски графа называется хроматическим многочленом. Обозначают . |
Содержание
Хроматический многочлен полного графа
, так как первую вершину полного графа можно окрасить в любой из цветов, вторую — в любой из оставшихся цветов и т. д. Очевидно, что если меньше , то и многочлен равен , так как один из его множителей .
Хроматический многочлен пустого графа
, так как каждую из вершин нулевого графа можно независимо окрасить в любой из цветов.
Примечание. Нулевой граф также можно обозначать (дополнительный граф для полного графа ).
Хроматический многочлен дерева
| Теорема (хроматический многочлен дерева): |
Граф с вершинами является деревом тогда и только тогда, когда . |
| Доказательство: |
|
Сначала покажем, что хроматический многочлен любого дерева с вершинами есть . |
Рекуррентные формулы для хроматических многочленов
| Теорема: |
Пусть и - несмежные вершины графа . Если , а (стягивание ребра) , то . |
| Доказательство: |
|
Напомним, что граф — граф, полученный из графа стягиванием ребра , то есть у которого вершины и будут отождествлены и при этом будут отброшены все петли и кратность ребер будет сведена к единице. Рассмотрим все произвольные раскраски графа . Рассмотрим те из них, при которых вершины и окрашены в разные цвета. Если добавить к графу ребро , то они не изменятся, то есть останутся правильными. Рассмотрим раскраски, при которых и одного цвета. Все эти раскраски останутся правильными и для графа, полученного из слиянием вершин и . |
Замечание: Если к некоторому произвольному графу добавлять ребра последовательно, не меняя его вершин, то на каком-то шаге мы получим полный граф. Аналогично мы получим полный граф, если в произвольном графе уменьшим число вершин, путем их отождествления, не меняя числа ребер.
Следствие: Хроматический многочлен любого графа равен сумме хроматических многочленов некоторого числа полных графов, число вершин в которых не больше, чем в графе .
| Теорема: |
Пусть и — смежные вершины графа . Если и , то . |
| Доказательство: |
| Следует из предыдущей теоремы. |
Коэффициенты хроматического многочлена
| Теорема (1): |
Свободный член хроматического многочлена равен . |
| Доказательство: |
| По определению хроматического многочлена графа , его значение в точке равно количеству способов раскрасить вершины правильным образом в цветов. Количество способов раскрасить граф в цветов равно . То есть . Из этого следует, что кратен , следовательно его свободный член равен . |
| Теорема (2): |
Старший коэффициент хроматического многочлена равен . |
| Доказательство: |
|
Воспользуемся рекуррентной формулой: |
| Теорема (3): |
Коэффициенты хроматического многочлена составляют знакопеременную последовательность. |
| Доказательство: |
|
Индукция по количеству вершин. |
| Теорема (4): |
Второй коэффициент хроматического многочлена равен по модулю количеству ребер графа. |
| Доказательство: |
| Из доказательства Теоремы (3) видно, что при увеличении количества ребер графа на , второй коэффициент также увеличивается на . Так как для пустого графа второй коэффициент равен , то утверждение верно для любого графа. |
См. также
Литература
1. Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2
2. Харари Ф. - Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. ISBN 978-5-397-00622-4