Семейство универсальных попарно независимых хеш-функций — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
| Строка 17: | Строка 17: | ||
При <tex>n=k</tex> существование <tex>H_{n, k}</tex> следует из леммы. | При <tex>n=k</tex> существование <tex>H_{n, k}</tex> следует из леммы. | ||
| − | При <tex>n | + | При <tex>n > k </tex> получим переменную <tex> x' </tex> обрезав первые <tex>n-k</tex> бит переменной <tex>x</tex>. Тогда для переменной <tex>x'</tex> существует <tex>H_{n, n}</tex>, а для <tex>x</tex> - соответственно <tex>H_{n, k}</tex>. |
| − | При <tex>n | + | При <tex>n < k </tex> получим <tex>H_{k, k}</tex>. <tex>H_{n, k}</tex> можно получить, обрезав значение хеш-функции из <tex>H_{k, k}</tex>, на первые <tex>n-k</tex> бит. |
Версия 13:02, 20 мая 2010
Определение
называется семейством универсальных попарно независимых хеш-функций, если для и и равномерной выборки функции будет выполнено
Лемма
Для любого существует
Доказательство
Функция , где в поле для любых ,
Теорема
Для любых существует
Доказательство
Построим следующим образом:
При существование следует из леммы.
При получим переменную обрезав первые бит переменной . Тогда для переменной существует , а для - соответственно .
При получим . можно получить, обрезав значение хеш-функции из , на первые бит.