
ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem A. Access Control Lists
Input file: access.in
Output file: access.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Nick is developing a new web server. The feature he is working on now is support for access control lists.
Access control list allows to restrict access to some resources on the web site based on the IP address of
the requesting party.

Each IP address is a 4-byte number that is written byte-by-byte in a decimal dot-separated notation
“byte0.byte1.byte2.byte3” (quotes are added for clarity). Each byte is written as a decimal number from
0 to 255 (inclusive) without extra leading zeroes. IP addresses are organized into IP networks.

IP network is described by two 4-byte numbers — network address and network mask. Both network
address and network mask are written in the same notation as IP addresses.

In order to understand the meaning of network address and network mask you have to consider their
binary representation. Binary representation of IP address, network address, and network mask consists
of 32 bits: 8 bits for byte0 (most significant to least significant), followed by 8 bits for byte1, followed by
8 bits for byte2, and followed by 8 bits for byte3.

IP network contains a range of 2n IP addresses where 0 ≤ n ≤ 32. Network mask always has 32− n first
bits set to one, and n last bits set to zero in its binary representation. Network address has arbitrary
32 − n first bits, and n last bits set to zero in its binary representation. IP network contains all IP
addresses whose 32 − n first bits are equal to 32 − n first bits of network address with arbitrary n last
bits.

For example, IP network with network address 194.85.160.176 and network mask 255.255.255.248 contains
8 IP addresses from 194.85.160.176 to 194.85.160.183 (inclusive).

IP networks are usually denoted as “byte0.byte1.byte2.byte3/s” where “byte0.byte1.byte2.byte3” is the
network address and s is the number of bits set to one in the network mask. For example, the IP network
from the previous paragraph is denoted as 194.85.160.176/29.

Access control list contains an ordered list of rules. Each rule has one of the following forms:

• “deny from <IP network>” — denies access to the resource to any IP from the specified IP net-
work.

• “deny from <IP address>” — denies access to the resource to the specified IP address.

• “allow from <IP network>” — allows access to the resource to any IP from the specified IP
network.

• “allow from <IP address>” — allows access to the resource to the specified IP address.

When some party requests some resource its IP address is first checked against its access control list.
The rules are scanned in order they are listed, and the first matching rule is applied. If none of the rules
matches the IP address of the party, access is granted.

Given access control list and the list of requesting IP addresses, find out for each request whether it will
be granted access to the resource.

Input

The first line of the input file contains n — the number of rules in the access control list
(0 ≤ n ≤ 100 000). The following n lines contain rules, one per line. IP network is always specified
as “byte0.byte1.byte2.byte3/s”.

Page 1 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

The next line contains m — the number of IP addresses to check (1 ≤ m ≤ 100 000). The following m
lines contain IP addresses to check, one per line.

Output

For each request output ‘A’ if it will be granted access to the resource, or ‘D’ if it will not be granted
access. Output all answers in one line, do not separate output by spaces.

Example

access.in access.out
4
allow from 10.0.0.1
deny from 10.0.0.0/8
allow from 192.168.0.0/16
deny from 192.168.0.1
5
10.0.0.1
10.0.0.2
194.85.160.133
192.168.0.1
192.168.0.2

ADAAA

Page 2 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem B. Billboard
Input file: billboard.in
Output file: billboard.out
Time limit: 3 seconds
Memory limit: 256 megabytes

At the entrance to the university, there is a huge rectangular billboard of size h×w (h is its height and w
is its width). The board is the place where all possible announcements are posted: nearest programming
competitions, changes in the dining room menu, and other important information.

On September 1, the billboard was empty. One by one, the announcements started being put on the
billboard.

Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a
rectangle of size 1× wi.

When someone puts a new announcement on the billboard, she would always choose the topmost possible
position for the announcement. Among all possible topmost positions she would always choose the
leftmost one.

If there is no valid location for a new announcement, it is not put on the billboard (that’s why some
programming contests have no participants from this university).

Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which
the announcements are placed.

Input

The first line of the input file contains three integer numbers, h, w, and n (1 ≤ h,w ≤ 109;
1 ≤ n ≤ 200 000) — the dimensions of the billboard and the number of announcements.

Each of the next n lines contains an integer number wi (1 ≤ wi ≤ 109) — the width of i-th announcement.

Output

For each announcement (in the order they are given in the input file) output one number — the number
of the row in which this announcement is placed. Rows are numbered from 1 to h, starting with the top
row. If an announcement can’t be put on the billboard, output “-1” for this announcement.

Example

billboard.in billboard.out
3 5 5
2
4
3
3
3

1
2
1
3
-1

Page 3 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem C. Class
Input file: class.in
Output file: class.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Dr. Strange is a really strange lecturer. Each lecture he calculates class fullness and if it is small, he
decreases all semester grades by one. So the students want to maximize the class fullness.

The class fullness is the minimum of row fullness and column fullness. The column fullness is the
maximum number of students in a single column and the row fullness is the maximum number of students
in a single row.

For example there are 16 students shown on the left picture (occupied desks are darkened). The row
fullness of this arrangement is 5 (the 4-th row) and the column fullness is 3 (the 1-st, the 3-rd, the 5-th or
the 6-th columns). So, the class fullness is 3. But if the students rearrange as shown on the right picture
then the column fullness will become 4 (the 5-th column), and so the class fullness will also become 4.

The students of Dr. Strange need to know the arrangement that maximizes class fullness so they ask
you to write a program that calculates it for them.

Input

The first line of the input file contains three integer numbers: n, r and c — number of students, rows
and columns in the class (1 ≤ r, c ≤ 100, 1 ≤ n ≤ r × c).

Output

The first line of the output file must contain a single integer number — the maximum possible class
fullness.

The following r lines must contain the optimal student arrangement. Each line must contain a description
of a single row. Row description is a line of c characters either ‘‘.’’ or ‘‘#’’, where ‘‘.’’ denotes an empty
desk, and ‘‘#’’ denotes an occupied one. If there are multiple optimal arrangements, output any one.

Example

class.in class.out
16 4 6 4

.####.
#..###
#...##
###.##

Page 4 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem D. Deposits

Input file: deposits.in
Output file: deposits.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Financial crisis forced many central banks deposit large amounts of cash to accounts of investment and
savings banks in order to provide liquidity and save credit markets.

Central bank of Flatland is planning to put n deposits to the market. Each deposit is characterized by
its amount ai.

The banks provide requests for deposits to the market. Currently there are m requests for deposits. Each
request is characterized by its length bi days.

The regulations of Flatland’s market authorities require each deposit to be refinanced by equal integer
amount each day. That means that a deposit with amount a and a request with length b match each
other if and only if a is divisible by b.

Given information about deposits and requests, find the number of deposit-request pairs that match each
other.

Input

The first line of the input file contains n — the number of deposits (1 ≤ n ≤ 100 000). The second line
contains n integer numbers: a1, a2, . . . , an (1 ≤ ai ≤ 106).

The third line of the input file contains m — the number of requests (1 ≤ m ≤ 100 000). The forth line
contains m integer numbers: b1, b2, . . . , bm (1 ≤ bi ≤ 106).

Output

Output one number — the number of matching pairs.

Example

deposits.in deposits.out
4
3 4 5 6
4
1 1 2 3

12

The following pairs match each other: (3, 1) twice (as (a1, b1) and as (a1, b2)), (3, 3), (4, 1) twice, (4, 2),
(5, 1) twice, (6, 1) twice, (6, 2), and (6, 3).

Page 5 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem E. Enchanted Mirror
Input file: enchanted.in
Output file: enchanted.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Alice likes two things in this world — her mirror and her toy bricks. Alice’s toy bricks were designed to
help the children to learn the alphabet, so there are some letters written on their top faces. Alice likes
to play with the bricks near the mirror.

When Alice learned the alphabet, she noticed that something was wrong with her mirror! A brick in the
mirror can show a different letter on it. Alice enjoyed this thing very much, and she invented a new game,
trying to make some funny words from the bricks in the real world and in the mirror simultaneously.

The rules of this game are the following. Alice creates a line from some bricks that shows the word S1.
This line is shown in the mirror as some word S2, which may be different from the reflection of S1 because
the mirror is enchanted. But the length of each of these words is equal to the same integer number N .

Then Alice can repeat the following step. She selects some two bricks i and j and swaps them. The
reflected Alice in the mirror does exactly the same with the mirrored line, except that she of course swaps
the bricks with positions N − i + 1 and N − j + 1 in it.

The goal is to create word T1 in the real world simultaneously with the word T2 in the mirror. Alice
wonders whether it is possible and she asks you for help. Write a program which can determine whether
the goal can be achieved.

Input

The input file contains four words S1, S2, T1 and T2, in this order, each on the separate line. All words
have the same length N (1 ≤ N ≤ 100) and consist only of uppercase English letters.

Output

If the goal can be achieved, output “Yes”. Otherwise output “No”.

Example

enchanted.in enchanted.out
TEAM
TIED
MATE
EDIT

Yes

TEAM
MATE
TAME
MEAT

No

AAAA
AAAA
AAAA
AAAA

Yes

Page 6 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem F. Fenwick Tree
Input file: fenwick.in
Output file: fenwick.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Fenwick tree is a data structure effectively supporting prefix sum queries.

For a number t denote as h(t) maximal k such that t is divisible by 2k. For example, h(24) = 3, h(5) = 0.
Let l(t) = 2h(t), for example, l(24) = 8, l(5) = 1.

Consider array a[1], a[2], . . . , a[n] of integer numbers. Fenwick tree for this array is the array
b[1], b[2], . . . , b[n] such that

b[i] =
i∑

j=i−l(i)+1

a[j].

So

b[1] = a[1],
b[2] = a[1] + a[2],
b[3] = a[3],
b[4] = a[1] + a[2] + a[3] + a[4],
b[5] = a[5],
b[6] = a[5] + a[6],
...

For example, the Fenwick tree for the array

a = (3,−1, 4, 1,−5, 9)

is the array

b = (3, 2, 4, 7,−5, 4).

Let us call an array self-fenwick if it coincides with its Fenwick tree. For example, the array above is not
self-fenwick, but the array a = (0,−1, 1, 1, 0, 9) is self-fenwick.

You are given an array a. You are allowed to change values of some elements without changing their
order to get a new array a′ which must be self-fenwick. Find the way to do it by changing as few elements
as possible.

Input

The first line of the input file contains n — the number of elements in the array (1 ≤ n ≤ 100 000). The
second line contains n integer numbers — the elements of the array. The elements do not exceed 109 by
their absolute values.

Output

Output n numbers — the elements of the array a′. If there are several solutions, output any one.

Example

fenwick.in fenwick.out
6
3 -1 4 1 -5 9

0 -1 1 1 0 9

Page 7 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem G. Ground Works
Input file: ground.in
Output file: ground.out
Time limit: 3 seconds
Memory limit: 256 megabytes

The Hilbert Mole is a small and very rare mole. The first and only specimen was found by David Hilbert
at his backyard. This mole lives in a huge burrow under the ground, and the border of this burrow forms
a Hilbert curve of n-th order (Hn).

Hilbert curves can be defined as follows. H1 is a unit square with open top side (fig. 1a), Hn consists
of four copies of Hn−1: bottom left and bottom right are copied without changes, top left is rotated
90◦ counter-clockwise and top right is rotated 90◦ clockwise. These small copies are connected by three
segments of unit length (fig. 1b,c,d).

Fig. 1. Hilbert curves, order 1 to 4.

Trying to exterminate the mole, Mr. Hilbert fills the burrow with water (fig. 2). But air inside the burrow
prevents water from filling it entirely. In this problem we suppose that air and water are incompressible
and cannot leak throw the borders of the burrow. Your task is to find the total area of the burrow, filled
with water.

Fig. 2. Burrow, filled with water.

Note that water can flow over the obstacle only when its level is strictly higher. See examples on fig. 3
for further clarification.

Page 8 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Fig. 3. More examples of filled burrows.

Input

The first line of the input file contains two integer numbers: n and α — order of Hilbert curve and slope
angle of surface in degrees (1 ≤ n ≤ 12, 0 ≤ α < 90).

Output

The first line of the output file must contain a single real number — the total area of the burrow, filled
with water. The relative error of the answer must not exceed 10−7.

Example

ground.in ground.out
5 30 190.803847577293

3 45 15.5

4 10 91.573591766702

3 0 26.0

Page 9 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem H. Holes
Input file: holes.in
Output file: holes.out
Time limit: 3 seconds
Memory limit: 256 megabytes

You may have seen a mechanic typewriter — such devices were widespread just 15 years ago, before
computers replaced them. It is a very simple thing. You strike a key on the typewriter keyboard, the
corresponding type bar rises, and the metallic letter molded into the type bar strikes the paper. The
art of typewriter typing, however, is more complicated than the art of computer typing. You should
strike keys with some force otherwise the prints will not be dark enough. Also you should not overdo it
otherwise the paper will be damaged.

Imagine a typewriter with very sharp letters, which cut the paper instead of printing. It is clear that
digit 0 being typed on the typewriter makes a nice hole in the paper and you receive a small paper oval
as a bonus. The same happens with some other digits: 4, 6, 9 produce one hole, and 8 produces two
touching holes. The remaining digits just cut the paper without making holes.

The Jury thinks about some exhibition devoted to the oncoming jubilee of Pascal language. One of the
ideas is to make an art installation, consisting of an empty sheet of paper with exactly h (0 ≤ h ≤ 510)
holes made by typing a non-negative integer number on the cutting typewriter described above. The
number must be minimal possible and should not have leading zeroes. Unluckily we are too busy with
preparing the ACM quarter- and semifinals, so we need your help and ask you to write a computer
program to generate the required number.

Input

A single integer number h — the number of holes.

Output

The integer number which should be typed.

Example

holes.in holes.out
0 1

1 0

15 48888888

70 88888888888888888888888888888888888

Page 10 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem I. Important Wires

Input file: important.in
Output file: important.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Nick bought a new motherboard for his computer and it seems that it does not work properly. The
motherboard is pretty complicated but it has only few important wires that have binary states: live or
dead. Nick wants to know the states of these wires.

Unfortunately, important wires are not directly accessible. But Nick found a maintenance socket. Each
output pin of this socket is connected to some of important wires via an integrated circuit. Fortunately,
Nick found the circuit layout in the Internet. To specify it, he marked important wires by lowercase
letters and socket’s output pins by uppercase letters. After that he wrote down Boolean formula for each
output pin. In these formulae live wires and pins are represented by true and dead wires — by false.

Nick used following notation for formulae (operations are listed from the highest priority to the lowest):
• Pin names — letters from ‘a’ to ‘k’;
• Parentheses — if E is a formula, then (E) is another;
• Negation — ¬E is a formula for any formula E;
• Conjunction — E1 ∧ E2 ∧ · · · ∧En;
• Disjunction — E1 ∨ E2 ∨ · · · ∨En;
• Implication — E1 ⇒ E2 ⇒ · · · ⇒ En. Implication is evaluated from right to left: E1 ⇒ E2 ⇒ E3

means E1⇒(E2⇒E3);
• Equivalence — E1 ≡ E2 ≡ · · · ≡ En. This expression is by definition computed as follows:

(E1 ≡ E2) ∧ (E2 ≡ E3) ∧ · · · ∧ (En−1 ≡ En).

Nick has lots of various gates at hand, so he can build a new circuit that implements any formula. The
variables of this formula are states of maintenance socket’s pins. First of all, Nick wants to construct a
circuit that takes all maintenance socket’s pins as inputs and has a single output wire that is always live.
Write a program to help him.

Input

The first line of the input file contains a single integer number n — the number of pins in the maintenance
socket (1 ≤ n ≤ 10). The following n lines contain description of one pin each.

Each pin description consists of a pin name and corresponding formula delimited by ‘:=’ token. Pin
name is a uppercase English letter. Formula is represented by a string consisting of tokens ‘a’..‘k’, ‘(’,
‘)’, ‘~’, ‘&’, ‘|’, ‘=>’, and ‘<=>’. The last five tokens stand for ¬, ∧, ∨,⇒ and ≡ respectively. Tokens can
be separated by an arbitrary number of spaces. Each pin description contains 1 000 characters at most.

Output

The first line of the output file must contain “Yes” if there exists a circuit which output wire is always
live and “No” otherwise.

In the former case the following line must contain the formula for the constructed circuit in the same
format as in the input file. Remember that the formula must contain each of pin names at least once
and it must not contain the wire names. The line must not exceed 1 000 characters.

Example

important.in important.out
3
A := (a=>c )& (b<=>d)
C:= a | b
B := c | d

Yes
C&A => B | ~A

Page 11 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem J. Just Too Lucky

Input file: just.in
Output file: just.out
Time limit: 3 seconds
Memory limit: 256 megabytes

Since mass transit was invented, people who buy tickets look for lucky ticket numbers. There are many
notions of lucky tickets, for example sometimes tickets are considered lucky if the sum of first half of the
digits is equal to the sum of the second half, sometimes the product is used instead of the sum, sometimes
permutation of digits is allowed, etc.

In St Andrewburg integer numbers from 1 to n are used as ticket numbers. Bill considers a ticket lucky
if its number is divisible by the sum of its digits. Help Bill to find the number of lucky tickets.

Input

The first line of the input file contains n (1 ≤ n ≤ 1012).

Output

Output one number — the number of lucky tickets.

Example

just.in just.out
100 33

Page 12 of 13



ACM ICPC 2008–2009, NEERC, Northern Subregional Contest
St Petersburg, November 1, 2008

Problem K. Key to Success

Input file: key.in
Output file: key.out
Time limit: 3 seconds
Memory limit: 256 megabytes

The organizers of the TV Show “Key to Success” are preparing a set of prizes for the winner of the game.
If the score of the winner is X, she must choose prizes with a total value of exactly X dollars.

The organizers have a couple of spare prizes from the previous competitions that have values a1, a2, . . . , an

dollars, respectively. Unfortunately they don’t know what the score of the winner will be. So the
organizers decided to buy m more prizes in order to maximize the minimal integer score that the winner
of the show wouldn’t be able to collect prizes for.

For example, if they already have prizes for 2, 3 and 9 dollars, and they want to buy 2 prizes, they should
buy prizes for 1 and 7 dollars. Then the winner of the show would be able to collect prizes for any score
from 1 to 22.

Input

The first line of the input file contains two integer numbers: n and m — the number of prizes the
organizers have and the number of prizes they are ready to buy (0 ≤ n ≤ 30, 1 ≤ m ≤ 30). The second
line contains n integer numbers ranging from 1 to 109 — the values of the prizes organizers have.

Output

Output m integer numbers — the values of the prizes the show organizers should buy. Output numbers
in non-decreasing order. If there are several optimal solutions, output any one.

Example

key.in key.out
3 2
2 3 9

1 7

Page 13 of 13


