
ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem A. A+B
Input file: aplusb.in
Output file: aplusb.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The Research Institute of Given Strings (RIGS) is a well-known place where people investigate anything
about strings. Peter works in the department of string operations of RIGS. His department invents
different ways to add, multiply, divide strings and even to take a logarithm of a string based on another
one.

Now Peter is involved in the new project concerning orthogonal strings. Peter proposed that two strings
P = P1P2 . . . Pn and Q = Q1Q2 . . . Qn of equal length n are called orthogonal, if Pi 6= Qi for each i in
the range 1..n. String S of length n is called orthogonal to set of strings V = {V1, V2, . . . , Vm} (each of
length n too) if S is orthogonal to Vj for any j in range 1..m.

Peter’s task is to invent the operation of orthogonal sum of two given strings. The current Peter’s proposal
allows to add only strings on a basis of some set, if they are orthogonal to this set. To do this, Peter
selects an arbitrary set of strings V such that all strings in V have the same length n. Then Peter takes
all strings of length n orthogonal to V over a fixed alphabet and sorts them, thus obtaining a sorted
sequence of strings T . Let’s denote the length of sequence T as M , and enumerate the elements of this
sequence as T0, T1, . . . , TM−1. Now Peter says that the orthogonal sum of two strings A = Ta and B = Tb

is a string C = Tc where c = (a + b) mod M .

Your task is to find the orthogonal sum of two given strings A and B on the basis of a given set V over
the alphabet of small English letters.

Input

The first line of the input file contains two integers: n — the length of each string (1 ≤ n ≤ 100 000) and
k — the cardinality of V (1 ≤ n · k ≤ 100 000). The next k lines contains strings V1, V2, . . . , Vk.

The last two lines contain strings A and B of length n. All strings Vj , A and B consist of small letters
of English alphabet. It is guaranteed that A and B are orthogonal to V .

Output

Output the orthogonal sum of strings A and B on the basis V .

Example

aplusb.in aplusb.out
2 2
ac
ad
bb
bb

be

2 1
yy
zz
zz

zx

Page 1 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem B. Beer Refrigerator

Input file: beer.in
Output file: beer.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Beer Lovers Club makes regular parties. They hate warm beer, but club’s refrigerator is too small to
store enough beer for the whole company. So they decided to order a special super-big beer refrigerator.
The new refrigerator should be a parallelepiped a× b× c and store exactly n cubical 1× 1× 1 beer boxes
(the club has n members). To decrease losses of cold, the total area of the surface of the refrigerator
must be as small as possible.

For example, if the capacity of the refrigerator must be 12, the possible variants are:

Dimensions Surface Area
3× 2× 2 32
4× 3× 1 38
6× 2× 1 40
12× 1× 1 50

The best variant in this case is 3× 2× 2.

Help the beer lovers to find the optimal dimensions for their new refrigerator.

Input

The input file contains single integer number n (1 ≤ n ≤ 106) — the capacity of the refrigerator.

Output

Output three integer numbers: a, b and c — the optimal dimensions of the refrigerator. If there are
several solutions, output any of them.

Example

beer.in beer.out
12 3 2 2

13 1 13 1

1000000 100 100 100

Page 2 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem C. Crosses and Crosses
Input file: crosses.in
Output file: crosses.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The game of Crosses and Crosses is played on the field of 1× n cells. Two players make moves in turn.
Each move the player selects any free cell on the field and puts a cross ‘×’ to it. If after the player’s move
there are three crosses in a row, he wins.

You are given n. Find out who wins if both players play optimally.

Input

Input file contains one integer number n (3 ≤ n ≤ 2000).

Output

Output ‘1’ if the first player wins, or ‘2’ if the second player does.

Example

crosses.in crosses.out
3 1

6 2

Page 3 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem D. Domestic Networks
Input file: domestic.in
Output file: domestic.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Alex is a system administrator of Domestic Networks Inc. His network connects apartments and spans
over multiple buildings.

The network expands and Alex has to design a new network segment. He has a map that shows apartments
to connect and possible links. Each link connects two apartments and for each possible link its length is
known. The goal is to make all apartments connected (possibly through other apartments).

Domestic Networks Inc. buys cable in the nearest cable shop. Unfortunately, shop sells only category 5
and 6 cables at price of p5 and p6 rubles per meter respectively. Moreover, there are only q5 meters of
category 5 cable and q6 meters of category 6 cable available in the shop.

Help Alex to solve a hard problem: make a new network construction plan with possible minimal cost.
A plan consists of list of links to be made and cable category for each link (each link should be a single
piece of cable of either 5 or 6 category). The cost of the plan is the sum of cost of all cables. The total
length of cables of each category used in the plan should not exceed the quantity of the cable available
in the shop.

Input

The first line of the input file contains two numbers: n — the number of apartments to be connected
and m — the number of possible links (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10 000).

Following m lines contain possible link descriptions. Each description consists of three integer numbers:
ai — appartments that can be connected by the link and li — link length in meters (0 ≤ li ≤ 100).
Apartments are numbered from 1 to n.

The last line of the input file contains four integer numbers: p5, q5, p6 and q6 — price and quantity of
category 5 and 6 cables respectively (1 ≤ pi, qi ≤ 10 000).

Output

If all apartments can be connected with the available cable, output n lines — an optimal network
construction plan. The first line of the plan must contain plan’s cost. Other lines of the plan must
consist of two integer numbers each: ai and ci — number of the link to make and ci — the category of
the cable to make it of. Links are numbered from 1 to m in the order they are specified in the input file.
If there are more than one optimal plans, output any of them.

If there is no plan meeting all requirements, output a single word “Impossible”.

Example

domestic.in domestic.out
6 7
1 2 7
2 6 5
1 4 8
2 3 5
3 4 5
5 6 6
3 5 3
2 11 3 100

65
1 5
2 6
4 6
5 6
7 5

Page 4 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem E. Elevator
Input file: elevator.in
Output file: elevator.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Edward works as an engineer for Non-trivial Elevators: Engineering, Research and Construction
(NEERC). His new task is to design a brand new elevator for a skyscraper with h floors.

Edward has an idée fixe: he thinks that four buttons are enough to control the movement of the elevator.
His last proposal suggests the following four buttons:

• Move a floors up.
• Move b floors up.
• Move c floors up.
• Return to the first floor.

Initially, the elevator is on the first floor. A passenger uses the first three buttons to reach the floor she
needs. If a passenger tries to move a, b or c floors up and there is no such floor (she attempts to move
higher than the h-th floor), the elevator doesn’t move.

To prove his plan worthy, Edward wants to know how many floors are actually accessible from the first
floor via his elevator. Help him calculate this number.

Input

The first line of the input file contains one integer h — the height of the skyscraper (1 ≤ h ≤ 1018).

The second line contains three integers a, b and c — the parameters of the buttons (1 ≤ a, b, c ≤ 100 000).

Output

Output one integer number — the number of floors that are reachable from the first floor.

Example

elevator.in elevator.out
15
4 7 9

9

Page 5 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem F. Formula
Input file: formula.in
Output file: formula.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Nick is a mathematician and his speciality is Boolean logic, especially repetition-free functions. The
Boolean function is repetition-free if it can be represented as a repetition-free formula. Formula is
repetition-free if each variable occurs in the formula only once.

Let us fix the syntax of considered logical formulae:
• Variables — letters from ‘a’ to ‘k’;
• Parentheses — if E is a formula, then (E) is another;
• Negation — ¬E is a formula for any formula E;
• Conjunction — E1 ∧ E2 ∧ · · · ∧En.
• Disjunction — E1 ∨ E2 ∨ · · · ∨En.

The operations are listed from the highest priority to the lowest.

The problem is to represent given Boolean function by a repetition-free formula.

Input

The only line of input contains the Boolean function represented as a string consisting of characters
‘a’..‘k’, ‘(’, ‘)’, ‘~’, ‘&’ and ‘|’. The last three tokens stand for ¬, ∧ and ∨ respectively. Tokens can be
separated by an arbitrary number of spaces. The line contains 1 000 characters at most. The formula in
the file is syntactically correct.

Output

The first line of the output file must contain “Yes” if function is repetition-free and “No” otherwise.

In the former case the following line must contain the repetition-free formula for given Boolean function
in the same format as in the input file. The line must contain no more than 1 000 characters.

Example

formula.in formula.out
(a | b) & (a | c) Yes

a | b & c

d&~d No

d & ~d | ~((a|~b) & (a|c)) Yes
~a&(b|~c)

a & b | ~ a & ~b No

Page 6 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem G. Given a string. . .

Input file: given.in
Output file: given.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Peter’s Boss is now very upset. He said that Peter’s vision of the orthogonal sum of two strings is not
collinear to the general pary line of RIGS. At least, it is very bad that the orthogonal sum of two strings
in Peter’s vision can be different depending on a selected set of strings. But Boss decided to give Peter
a last str. . . well, a chance.

Peter’s colleague Andrew invented another definition of orthogonal sum of two strings of equal length n,
which depends only on the alphabet. The basic alphabet to define this operation consists only of zeros
and ones. The orthogonal sum of two strings a ⊕ b is just a string c where ci = ai ⊕ bi (Si denotes i-th
character of string S). Here ⊕ stands for exclusive OR operation which returns 0 for equal characters
and 1 otherwise.

Now Peter must study properties of orthogonal closure of a given string S. The orthogonal closure of S
(denoted S⊕) is a set of strings S(k) ⊕ S(l) for any 0 ≤ k, l ≤ n− 1, where n is the length of S, and S(k)

denotes an operation of k-th circular shift of S — moving k last characters from the end of the string S
to its beginning. For example, the second circular shift of abcde is deabc.

Given a string T , Peter’s task is to check whether it belongs to S⊕. Could you solve this task for him?

Input

The first line of the input file contains a given string T . The second line contains S. Both strings are of
equal length in range from 1 to 5 000 characters. All characters in these strings are zeros or ones.

Output

If a given string belongs to S⊕, output “Yes”. Otherwise output “No”.

Example

given.in given.out
11111
10101

No

11110
10101

Yes

Page 7 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem H. History of Football

Input file: history.in
Output file: history.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Henry is a historian. He specializes in the history of sports, especially football. Whenever he sees a table
of a football tournament, he saves it into his database.

Recently he ran across a web-site with standings of a small tournament. Unfortunately for him, the
results of the games were lost, and the only available information was the amount of points gained by
each team.

Disappointed by that, he decides to have some mathematical fun and to calculate in how many different
ways the games of the championship could have ended. He doesn’t care about the scores of the games,
he only cares about the winners.

In that tournament the following rules were applied:
• Each team plays against each other team exactly once.
• In case of a tie each team gains 1 point.
• In other case the winner gains 3 points and the loser gains 0 points.

For example, if Henry knows that each of 3 teams had got 3 points by the end of the tournament, the
answer to his question is that there are two possible tournament tables:

Possible table number 1 Possible table number 2
Team A B C Points
A - 3 0 3
B 0 - 3 3
C 3 0 - 3

Team A B C Points
A - 0 3 3
B 3 - 0 3
C 0 3 - 3

Help Henry calculate the number of different possible tournament tables (without consideration of the
scores of the games).

Input

Input file contains integer n, the number of teams in the championship (2 ≤ n ≤ 8). The following n
lines contain one integer number each — points gained by the teams.

Output

Output one integer number — the number of possible tournament tables with given total points. It is
guaranteed that there is at least one such tournament table.

Example

history.in history.out
3
3
3
3

2

Page 8 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem I. iChess
Input file: ichess.in
Output file: ichess.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The Jury of NEERC’07 quarterfinals is proud to present you a new game — chess patience. This patience
is played not with cards, but with black and white square tiles. The goal of the game is to place these
tiles on a flat surface so that they form a square colored in a chess-like pattern. The square should be
totally filled and be of the maximal possible size. There may remain some spare tiles, if they do not fit
into the resulting square.

To make this game more popular, a computer version of this patience named iChess was developed. The
rules are the same with the exception that the player is given the number of tiles, not the actual tiles.
Also, the result of the patience is not the actual layout, but the side length (measured in tiles) of the
maximal square with the required layout.

Your task is to write a program which can play iChess patience.

Input

The input file contains two integer numbers b and w — the number of black and white tiles respectively
(0 ≤ b, w ≤ 10 000).

Output

The first line of the input file must contain a single integer number s — the side length of the maximum
possible square made of at most b black and w white tiles.

If no square can be formed with the given tiles, output a single word “Impossible”.

Example

ichess.in ichess.out
12 15 5

0 0 Impossible

Page 9 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem J. Journey with Pigs

Input file: journey.in
Output file: journey.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Farmer John has a pig farm near town A. He wants to visit his friend living in town B. During this
journey he will visit n small villages so he decided to earn some money. He tooks n pigs and plans to sell
one pig in each village he visits.

Pork prices in villages are different, in the j-th village the people would buy a pork at pj rubles per
kilogram. The distance from town A to the j-th village along the road to town B is dj kilometers.

Pigs have different weights. Transporting one kilogram of pork per one kilometer of the road needs t
rubles for addition fuel.

Help John decide, which pig to sell in each town in order to earn as much money as possible.

Input

The first line of the input file contains integer numbers n (1 ≤ n ≤ 1000) and t (1 ≤ t ≤ 109). The second
line contains n integer numbers wi (1 ≤ wi ≤ 109) — the weights of the pigs. The third line contains
n integer numbers dj (1 ≤ dj ≤ 109) — the distances to the villages from the town A. The fourth line
contains n integer numbers pj (1 ≤ pj ≤ 109) — the prices of pork in the villages.

Output

Output n numbers, the j-th number is the number of pig to sell in the j-th village. The pigs are numbered
from 1 in the order they are listed in the input file.

Example

journey.in journey.out
3 1
10 20 15
10 20 30
50 70 60

3 2 1

Page 10 of 11

ACM ICPC 2007–2008, NEERC, Northern Subregional Contest
St Petersburg, October 28, 2007

Problem K. K’ak’-u-pakal and Mayan Script

Input file: kak-u-pakal.in
Output file: kak-u-pakal.out
Time limit: 2 seconds
Memory limit: 64 megabytes

When scientists re-discovered ancient Mayan cities, they found many texts, written
in unknown script. An example of the script is shown on the right, where the name
of K’ak’-u-pakal, a military leader and priest in ancient Mayan city of Chichén Itzá,
is written (see A. W. Voss, H. J. Kremer, K’ak’-u-pakal, Hun-pik-tok’ and the Kokom
for details). This hieroglyph can be found in many sites of the city.

Mayan hieroglyphs are not hieroglyphs in proper sense, but compositions of separate glyphs. All known
glyphs (there is about one thousand of them) are indexed with numbers from 1 to 9999. A special language
for encoding glyphs relative positions made it possible to write any hieroglyph in plain text. For example
the above K’ak’-u-pakal hieroglyph is encoded as “((669:604).(586:(27:[(534.534)])))”.

Here is the formal grammar of the language (adapted for the contest):
〈inscription〉 −→ 〈glyph id〉 | ‘(’ 〈block〉 ‘.’ 〈horisontal group〉 ‘)’ | ‘(’ 〈block〉 ‘:’ 〈vertical group〉 ‘)’

〈horisontal group〉 −→ 〈block〉 [‘.’ 〈horisontal group〉]
〈vertical group〉 −→ 〈block〉 [‘:’ 〈vertitcal group〉]

〈block〉 −→ 〈inscription〉 | ‘[’ 〈inscription〉 ‘]’
The hieroglyph encoding describes a process of the hieroglyph composition. Glyphs are combined hor-
izontally or vertically (using ‘.’ or ‘:’) into blocks, which in turn are combined into larger and larger
blocks, until the necessary configuration is achieved.

It took a hundred years to decipher Mayan hieroglyphs and convert them into plain text, but we hope
that you can create a program for the backward conversion (text to hieroglyph layout) much quicker.

Input

The first line of the input file contains a space-free text string (255 symbols at most), containing Mayan
hieroglyph encoded in plain text form.

Output

Output text, composed of characters ‘+’, ‘-’, ‘|’, ‘ ’ (ASCII codes 43, 45, 124, 32), ‘0’..‘9’ and line feeds.
All blocks of a group should have exactly the same size, except the block with square braces around it
(there will be one such block per group at most) which should be exactly two times wider (or higher if
the group is vertical). The glyph id (with one leading and one trailing space) should be placed at the
upper left corner of the block. The output should be as short as possible. It’s guaranteed that for each
test there exists a proper layout, which has 100 000 bytes at most.

Example
kak-u-pakal.in kak-u-pakal.out

((669:604).(586:(27:[(534.534)]))) +-----------+-----------+
669	586
+-----------+-----------+	
604	27
+-----+-----+	
	534
+-----------+-----+-----+

Page 11 of 11

