
IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

Problem A. Up and Down
Input file: up.in
Output file: up.out

This problem is based on a children’s game, Chutes and Lad-
ders, where players take turns jumping a number of steps
along a path. If they land on the base of a ladder, they rise
to the top of the ladder in the same turn. If they land at the
top of a chute, they slide down to the bottom in the same
turn. The idea is to get to the final step on the path. In
the children’s game the number of steps to move in a turn
is determined randomly, so the game requires no decisions.
In the version here, Up and Down, players get to choose
the number of steps to jump forward in each turn. Both
figures above show spaces numbered from 0 to 28, with sev-
eral chutes and ladders. They show two different possible
sequences of moves, assuming jumps of 1, 2 or 3 are allowed.
Each jump is illustrated starting at a gray dot and ending at
an arrowhead, jumping 1-3 places ahead, sometimes ending
there, and sometimes shifting up a ladder or down a chute.
The players in Figures 1 and 2 finish in 5 and 4 turns respec-
tively. Figure 2 demonstrates the minimum number of turns
for this path configuration and a maximum jump of 3.

It gets harder a figure out the best path if there are more
chutes and ladders and many more spaces along the path!
Be careful of your algorithm, given the large limit on the
number of spaces specified below.

Input

The input will consist of one to twenty data sets, followed by

a line containing only 0. The first line of a dataset contains
blank separated integers w s p, where w is the number of
the winning space, 3 ≤ w ≤ 1 000 000 000, s is the maximum
number of spaces to jump in each turn, 2 ≤ s ≤ 6, and p is
the total number of chutes and ladders, 1 ≤ p ≤ 40.

The remaining lines of the data set consist of pairs of integers
bi ei, for i = 1, 2, ...p. Each bi ei pair is the beginning space
and ending space for a chute or ladder, so a turn with a
jump to bi actually ends at ei. All the integers are positive
and less than w, and none of these 2p numbers appears more
than once. Following the rules of the game, it is possible
to eventually reach space w, starting from space 0, for each
dataset. The numbers bi are in increasing order. Numbers in
these lines are separated by either a single blank or a newline.

Output

There is one line of output for each data set, containing only
the minimum number of turns it takes to start at space 0
and end at space w, with the jump in each turn chosen as a
positive integer no larger than s.

The first sample input data set corresponds to the configu-
ration in the Figures.

Example

up.in up.out
28 3 5
2 18 5 13 12 6
17 25 20 15
50 6 1
9 45
0

4
3

Problem B. Gnome Sequencing
Input file: gnome.in
Output file: gnome.out

In the book All Creatures of Mythology, gnomes are kind,
bearded creatures, while goblins tend to be bossy and simple-
minded. The goblins like to harass the gnomes by making
them line up in groups of three, ordered by the length of
their beards. The gnomes, being of different physical heights,
vary their arrangements to confuse the goblins. Therefore,
the goblins must actually measure the beards in centimeters
to see if everyone is lined up in order.

Your task is to write a program to assist the goblins in de-
termining whether or not the gnomes are lined up properly,
either from shortest to longest beard or from longest to short-
est.

Input

The input starts with line containing a single integer N ,
0 < N < 30, which is the number of groups to process. Fol-
lowing this are N lines, each containing three distinct positive
integers less than 100.

Output

There is a title line, then one line per set of beard lengths.
See the sample output for capitalization and punctuation

Page 1 of 6

IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

Example

gnome.in gnome.out
3
40 62 77
88 62 77
91 33 18

Gnomes:
Ordered
Unordered
Ordered

Problem C. DuLL
Input file: dull.in
Output file: dull.out

In Windows, a DLL (or dynamic link library) is a file that
contains a collection of pre-compiled functions that can be
loaded into a program at runtime. The two primary benefits
of DLLs are (1) only one copy of a DLL is needed in mem-
ory, regardless of how many different programs are using it
at the same time, and (2) since they are separate from pro-
grams, DLLs can be upgraded independently, without having
to recompile the programs that use them. (DLLs have their
problems, too, but we’ll ignore those for now.) Your job is to
calculate the maximum memory usage when running a series
of programs together with the DLLs they need.

The DLLs in our system are not very exciting. These dull
DLLs (or DuLLs) each require a fixed amount of memory
which never changes as long as the DuLL is in memory. Sim-
ilarly, each program has its own fixed memory requirements
which never change as long as the program is executing. Each
program also requires certain DuLLs to be in memory the
entire time the program is executing. Therefore, the only
time the amount of memory required changes is when a new
program is executed, or a currently running program exits.
When a new program begins execution, all DuLLs required
by that program that must be loaded into memory if they
are not there already. When a currently running program
exits, all DuLLs that are no longer needed by any currently
running programs are removed from memory.

Remember, there will never be more than one copy of a spe-
cific DuLL in memory at any given time. However, it is possi-
ble for multiple instances of the same program to be running
at the same time. In this case each instance of the program
would require its own memory; however, the instances still
share DuLLs in the same way two unrelated programs would.

Input

The input consists of at least one data set, followed by a line
containing only 0.

The first line of a data set contains three space separated
integers N P S, where N is the number of DuLLs available,
1 ≤ N ≤ 20, P is the number of programs which can be
executed, 1 ≤ P ≤ 9, and S is the number of state transitions
recorded, 1 ≤ S ≤ 32.

The next line contains exactly N space separated inte-
gers representing the sizes in bytes of each of the DuLLs,
1 ≤ size ≤ 1 000. Each DuLL is implicitly labeled with a
letter: ‘A’, ‘B’, ‘C’, . . . , possibly extending to ‘T’.

Therefore the first integer is the size of ‘A’, the second inte-
ger is the size of ‘B’, and so on. The next P lines contain
information about each of the programs, one program per

line. Each line contains a single integer representing the size
of the program in bytes, 1 ≤ size ≤ 1 000, followed by 1 to
N characters representing the DuLLs required by that pro-
gram. There will be a single space between the size of the
program and the DuLL labels, but no spaces between the la-
bels themselves. The order of the labels is insignificant and
therefore undefined, but they will all be valid DuLL labels,
and no label will occur more than once. Each program is
implicitly labeled with an integer: 1, 2, 3, . . . possibly ex-
tending to 9. The final line of the data set will contain S
space separated integers. Each integer will either be a pos-
itive number q, 1 ≤ q ≤ P , indicating that a new execution
of program q has begun, or else it will be a negative number
q, 1 ≤ q ≤ P , indicating that a single execution of program
q has completed. The transitions are given in the order they
occurred. Each is a valid program number; if it is a negative
number q then there will always be at least one instance of
program q running.

Output

There is one line of output for each data set, containing only
the maximum amount of memory required throughout the
execution of the data set.

Example

dull.in dull.out
2 2 3
500 600
100 A
200 B
2 1 2
5 4 8
100 400 200 500 300
250 AC
360 ACE
120 AB
40 DE
2 3 4 -3 1 2 -2 1
0

1600
2110

Problem D. Black Vienna
Input file: vienna.in
Output file: vienna.out

This problem is based on the game of Black Vienna. In
this version there are three players and 18 cards labeled A-
R. Three of the cards are set aside (hidden) and form the
“Black Vienna” gang. The remaining cards are shuffled and
dealt to the players so that each player has 5 cards. Players
never reveal their cards to each other. There is a separate
deck of ”interrogation cards” which contain three distinct
letters in ascending order, like ACG or BHR. Turns rotate
through players 1, 2, and 3. On each player’s turn, that
player selects an interrogation card, puts it face up in front
of another player, and that other player must indicate the
total number of these cards being held, without saying which
ones. All players see the result of the “interrogation”. The
play continues until a player deduces the three cards in the
“gang”.

For example, suppose the cards are distributed as follows,

Page 2 of 6

IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

and the game then proceeds:

Player 1: DGJLP; Player 2: EFOQR; Player 3: ACHMN;
Gang: BIK

Turn 1: Player 1 interrogates player 2 with BJK; answer 0
Turn 2: Player 2 interrogates player 3 with ABK; answer 1
Turn 3: Player 3 interrogates player 2 with DEF; answer 2
Turn 4: Player 1 interrogates player 2 with EIL; answer 1
Turn 5: Player 2 interrogates player 3 with FIP; answer 0
Turn 6: Player 3 interrogates player 1 with GMO; answer 1
Turn 7: Player 1 interrogates player 2 with OQR; answer 3
Turn 8: Player 2 interrogates player 3 with ADQ; answer 1
Turn 9: Player 3 interrogates player 1 with EGJ; answer 2

In fact, the game does not need to get to turn 9. With enough
thought, player 1 can deduce after turn 8 that the gang is
BIK. It is your job to analyse records of games and deduce
the earliest time that the gang could be determined for sure.

Input

The input will consist of one to twelve data sets, followed by
a line containing only 0.

The first line of a dataset contains the number, t, of turns
reported, 2 ≤ t ≤ 15.

The next line contains four blank separated strings for the
hands of players 1, 2, and 3, followed by the cards for the
gang.

The remaining t lines of the data set contain the data for
each turn in order. Each line contains three blank separated
tokens: the number of the player interrogated, the string of
interrogation letters, and the answer provided.

All letter strings will contain only capital letters from A to
R, in strictly increasing alphabetical order. The same in-
terrogation string may appear in more than one turn of a
game.

Output

There is one line of output for each data set. The line con-
tains the single character “?” if no player can be sure of the
gang after all the turns listed. If a player can determine the
gang, the line contains the earliest turn after which one or
more players can be sure of the answer.

Example

vienna.in vienna.out
9
DGJLP EFOQR ACHMN
BIK
2 BJK 0
3 ABK 1
2 DEF 2
2 EIL 1
3 FIP 0
1 GMO 1
2 OQR 3
3 ADQ 1
1 EGJ 2

8
?

vienna.in vienna.out
3
ABCDE FGHIJ KLMNO
PQR
3 BKQ 1
1 ADE 3
2 CHJ 2
0

Problem E. Duplicate Removal
Input file: dup.in
Output file: dup.out

The company Al’s Chocolate Mangos has a web site where
visitors can guess how many chocolate covered mangos are
in a virtual jar. Visitors type in a guess between 1 and 99
and then click on a “Submit” button. Unfortunately, the
response time from the server is often long, and visitors get
impatient and click “Submit” several times in a row. This
generates many duplicate requests.

Your task is to write a program to assist the staff at ACM
in filtering out these duplicate requests.

Input

The input consists of a series of lines, one for each web ses-
sion. The first integer on a line is N , 0 < N ≤ 25, which
is the number of guesses on this line. These guesses are all
between 1 and 99, inclusive. The value N = 0 indicates the
end of all the input.

Output

For each input data set, output a single line with the guesses
in the original order, but with consecutive duplicates re-
moved. Conclude each output line with the dollar sign char-
acter ‘$’. Note that there is a single space between the last
integer and the dollar sign.

Example

dup.in dup.out
5 1 22 22 22 3
4 98 76 20 76
6 19 19 35 86 86 86
1 7
0

1 22 3 $
98 76 20 76 $
19 35 86 $
7 $

Problem F. Rock, Paper, Scissors
Input file: rps.in
Output file: rps.out

Rock, Paper, Scissors is a classic hand game for two people.
Each participant holds out either a fist (rock), open hand
(paper), or two-finger V (scissors). If both players show the
same gesture, they try again. They continue until there are
two different gestures. The winner is then determined ac-
cording to the table below:

Rock beats Scissors

Paper beats Rock

Scissors beats Paper

Page 3 of 6

IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

Your task is to take a list of symbols representing the gestures
of two players and determine how many games each player
wins.

In the following example:

Turn : 1 2 3 4 5
Player 1 : R R S R S
Player 2 : S R S P S

Player 1 wins at Turn 1 (Rock beats Scissors), Player 2 wins
at Turn 4 (Paper beats Rock), and all the other turns are
ties.

Input

The input contains between 1 and 20 pairs of lines, the first
for Player 1 and the second for Player 2. Both player lines
contain the same number of symbols from the set {‘R’, ‘P’,
‘S’}. The number of symbols per line is between 1 and 75,
inclusive. A pair of lines each containing the single character
‘E’ signifies the end of the input.

Output

For each pair of input lines, output a pair of output lines as
shown in the sample output, indicating the number of games
won by each player.

Example

rps.in rps.out
RRSRS
SRSPS
PPP
SSS
SPPSRR
PSPSRS
E
E

P1: 1
P2: 1
P1: 0
P2: 3
P1: 2
P2: 1

Problem G. A to Z Numerals
Input file: numeral.in
Output file: numeral.out

Roman numerals use symbols I, V, X, L, C, D, and M with
values 1, 5, 10, 50, 100, 500, and 1000 respectively. There is
an easy evaluation rule for them:

Rule: Add together the values for each symbol that
is either the rightmost or has a symbol of no greater
value directly to its right. Subtract the values of
all the other symbols. For example: MMCDLXIX
= 1000 + 1000 − 100 + 500 + 50 + 10 − 1 + 10 = 2469.

Further rules are needed to uniquely specify a Roman nu-
meral corresponding to a positive integer less than 4000:

1. The numeral has as few characters as possible. (IV not
IIII)

2. All the symbols that make positive contributions form
a non-increasing subsequence. (XIV, not VIX)

3. All subtracted symbols appear as far to the right as
possible. (MMCDLXIX not MCMDLIXX)

4. Subtracted symbols are always for a power of 10, and
always appear directly to the left of a symbol 5 or 10

times as large that is added. No subtracted symbol can
appear more than once in a numeral.

Rule 4 can be removed to allow shorter numerals, and still
use the same evaluation rule: IM = −1 + 1000 = 999, ILIL
= −1 + 100 + −1 + 100 = 198, IVL = −1 − 5 + 100 = 94.
This would not make the numerals unique, however. Two
choices for 297 would be CCVCII and ICICIC. To eliminate
the second choice in this example, Rule 4 can be replaced by

4’. With a choice of numeral representations of the same
length, use one with the fewest subtracted symbols.

Finally, replace the Roman numeral symbols to make a sys-
tem that is more regular and allows larger numbers: Assign
the English letter symbols a, A, b, B, c, C, . . . , y, Y, z, and Z
to values 1, 5, 10, 5×10, 102, 5×102, . . . , 1024, 5×1024, 1025,
and 5 × 1025 respectively. Though using the whole alphabet
makes logical sense, your problem will use only symbols a-R
for easier machine calculations. (R = 5 × 1017)

With the new symbols a-Z, the original formation rules 1-
3, the alternate rule 4’, and the evaluation rule, numerals
can be created, called A to Z numerals. Examples: ad
= −1 + 1000 = 999; aAc = −1 − 5 + 100 = 94.

Input

The input starts with a sequence of one or more positive
integers less than 7 × 1017, one per line. The end of the
input is indicated by a line containing only 0.

Output

For each positive integer in the input, output a line contain-
ing only an A to Z numeral representing the integer.

Example

numeral.in
999
198
98
297
94
666666666666666666
0

numeral.out
ad
acac
Acaaa
ccAcaa
aAc
RrQqPpOoNnMmLlKkJjIiHhGgFfEeDdCcBbAa

Problem H. Cell Towers
Input file: cell.in
Output file: cell.out

Cell phones generally provide service by connecting to a
nearby cellular tower. At any given time there may be several
towers in range. The cell phone, however, will only connect
to the one with the best signal strength. The purpose of

Page 4 of 6

IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

this problem is to track a traveler carrying a cell phone. At
each mile marker along a road, note which tower the cell
phone is using, and report when it is different from the pre-
vious marker. The position of towers will be specified as X-Y
coordinates in miles relative to some arbitrary origin. The
traveler will travel down a road composed of straight line
segments laid end to end. The road will not intersect itself.
Assume that there are markers occurring every mile along
the road, with mile marker zero being at the starting point.
If the road ends at least 0.5 miles past the last mile marker,
the end of the road is labeled with the next mile. For in-
stance if the road is 8.6 miles long, the endpoint is labeled
as mile 9. If the road is 8.2 miles long, regular mile marker
8 is the last.

If d is the distance to a tower with power p, the signal
strength for the tower will be calculated as p/d2, rounded
to the nearest integer. A tower will never be placed at the
position of a mile marker. Consider the examples shown
in the Figures below. Each shows a road and labeled mile
markers and cell towers.

In Figure 1, where the segments of the road all follow the
background grid, mile markers come at intersections in the
grid. The cell towers A and B are at (1, 4) and (5, 4). Both
have power 1 000. At mile markers 0 and 1 the strength of A
is greater. At mile markers 2 – 4 the strength of A and B are
equal. In such cases you are to note the cell tower with the
label closer to the beginning of the alphabet, so it continues
to be A. At mile markers 5 – 9 B is stronger. At mile 10 the
towers are of equal strength, but the one with first letter is
reported, A. Tower A remains strongest to the end. The long
crossbars show the mile markers where the reported strongest
tower is different than at the previous marker.

Figure 1 Figure 2 Figure 3

The example in Figure 2 has three towers: A at (0, 0) and
C at (6, 6), both with power 1 000, while tower B at (6, 0)
has a power of 600. The mile markers are at the tick marks.
They show the traveler’s progression along the road. The
mile markers are no longer at grid intersections because of
the angled road. Initially tower A is the strongest. Tower C
is strongest at mile markers 3 – 8. The end of the road at
(5, 2) is more than a half mile from mile 8, so it is labeled as
mile 9. At the endpoint, B is strongest, unlike at mile 8, so
a report is made for the endpoint.

Figure 3 is similar to Figure 2, except it shifts the beginning
of the road and changes the power of cell tower B to 300.
Tower A starts as the strongest, and then at mile markers
2 – 7 tower C is strongest. The endpoint at (5, 2) is not
considered, since it is less than .5 miles from mile marker 7,
even though tower B is strongest at this endpoint.

Input

The input consists of at least one data set, followed by a line

containing only 0.

The first line of a data set contains two space separated in-
tegers T R, where T is the number of towers, 1 ≤ T ≤ 10,
R is the number of line segments which comprise the road,
1 ≤ R ≤ 10.

The next T lines each contain three space separated integers
representing the X-coordinate, Y-coordinate, and power of
one tower, respectively. The towers are implicitly labeled
‘A’, ‘B’, ‘C’, and so on.

The next line contains 2(R + 1) integers which are the coor-
dinates for the R + 1 points that define the road. The road
starts on the first point and moves in straight line segments
through all R remaining points. All coordinates will be inte-
gers between 0 and 100, inclusive. No two coordinate pairs
are equal. The power for a tower will be an integer between
1 and 1 000 000, inclusive.

Output

There is one line of output for each road in the data set. The
line consists of ordered pairs separated by a single space. The
first element of a pair is a number representing a mile marker.
The second element of the pair is a letter corresponding to
the tower with the strongest signal. There are entries for mile
0 and every mile marker where the strongest tower recorded
is different than at the previous mile marker. The ordered
pairs are surrounded by parentheses, and the elements are
separated by a comma, with no whitespace inside the ordered
pair.

Example

cell.in
2 5
1 4 1000
5 4 1000
1 5 3 5 3 3 5 3 5 1 1 1
3 2
0 0 1000
6 0 600
6 6 1000
1 1 5 5 5 2
3 2
0 0 1000
6 0 300
6 6 1000
2 2 5 5 5 2
0

cell.out
(0,A) (5,B) (10,A)
(0,A) (3,C) (9,B)
(0,A) (2,C)

Problem I. RIPOFF
Input file: ripoff.in
Output file: ripoff.out

Business has been slow at Gleamin Lemon Used Auto Sales.
In an effort to bring in new customers, management has cre-
ated the Rebate Incentive Program Of Fabulous Fun (or
RIPOFF). This is a simple game which allows customers

Page 5 of 6

IFMO Training 35 — ACM ICPC 2009–2010 Mid-Central
University ITMO, May 13, 2013

to try and win a rebate on an automobile purchase. The
RIPOFF game is a board game where each square is labeled
with a rebate amount. The customer advances through the
board by spinning a spinner. Each square he lands on adds
to his total rebate amount. When he reaches the end of the
board he is rewarded with the total rebate amount.

Of course, given the company involved, it should come as
no surprise that there are a couple of catches written in the
fine print. The first is that there is a limit to the number of
turns the customer has to finish the game; if he doesnt reach
the end within the allotted number of turns then he loses his
rebate. The second is that some of the squares actually have
a negative amount which subtract from the rebate instead
of adding to it. A particularly unlucky customer might even
come out of the game with a negative rebate.

Even with these catches, the management of Gleamin Lemon
is concerned that someone might win a particularly large re-
batesomething they would like to avoid at all costs. Your job
is to take a particular configuration for the RIPOFF game
and decide the maximum rebate a customer could possibly
obtain. Consider, for example, the game board below. As-
sume we have 5 turns to finish the game, and each turn we
can move between 1 and 4 spaces depending on what we spin.
Notice that we must start just before the board begins, so
spinning a 1 causes us to land on the first square. Also notice
we must end by landing past the end of the last square. It
does not have to be exact; any number that gets us off of the
board will work.

The illustration shows two different possible ways the game
might go. Following the arrows on the top, if we spin a 2, 3,
4, 1, and 1 respectively, we will win a total rebate of 50 +
30 + 20 + 70 = $170. However, the best possible rebate we
could win would be $220. We would win this amount if we
spun a 1, 3, 2, 4, and 1 respectively, as shown by the lower
path. Notice that we did not land on every square with a
positive number; if we had we wouldnt have been able to
make it to the end of the board before the 5 turns was up.

The illustration in Figure 2 shows a game where we have 4
turns to finish the game, and can move up to 3 spaces each
turn. Again, two different paths are shown, the one on top
earning a rebate of -$150, and the one on bottom earning
a rebate of -$100. In fact, -$100 is the highest possible re-
bate we could earn for this game (a fact that would no doubt
please the management of Gleamin Lemon). Of course, there
also might be a sequence of moves in which we do not reach
the end before the turn limite.g. spinning a 1 every time.
Although not finishing would actually be preferable to fin-
ishing with a negative rebate, in this problem we are only
going to consider sequences of moves which allow us to reach
the end before the turn limit.

Input

The input consists of one to twenty data sets, followed by a
line containing only 0.

The first line of a data set contains three space separated
integers N S T , where

N is the total number of squares on the board, 2 ≤ N ≤ 200.

S is the maximum number of spaces you may advance in each
turn, 2 ≤ S ≤ 10.

T is the maximum number of turns allowed, where
N + 1 ≤ ST and T ≤ N + 1.

The data set ends with one or more lines containing a total
of N integers, the numbers on the board. Each number has
magnitude less than 10000.

Output

The output for each data set is one line containing only the
maximum possible rebate that can be earned by completing
the game.

To complete the game you must advance a total of N + 1
spaces in at most T turns, each turn advancing from 1 to
S spaces inclusive. It will always be possible to complete a
game. However, there may be a very large number of dif-
ferent turn sequences that will finish, so you will need to be
careful in choosing your algorithm.

The sample input data corresponds to the games in the Fig-
ures.

Example

ripoff.in ripoff.out
10 4 5
100 50 -20 60 30
-10 -30 -50 20 70
9 3 4
150 100 -200
-100 -300 -100
-200 100 150
0

220
-100

Page 6 of 6

