
SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

Problem A. Auxiliary Question of the Universe
Input file: auxiliary.in

Output file: auxiliary.out

Time limit: 3 seconds
Memory limit: 256 megabytes

As you probably know, scientists already discovered the Ultimate
question of life, the Universe, and everything, and it is “What do
you get if you multiply six by nine?”. Not satisfied by this, the
scientists contracted a small Magrateyan company to construct
a mini-computer to find out some more specific question (they
named it auxiliary), which can theoretically shed more light on
life, the Universe or something else.

This computer was built, but unluckily (although not unexpect-
edly) the result of computation was corrupted and partially lost.
Finally the computer constructors managed to receive a string,
which is a part of the correct question. After thorough analysis
the constructors started to believe that the original result can be
reconstructed from the string by adding some letters to it without
the string letters being reordered or removed. Also they believe
that the correct result is an arithmetic expression (as with the
Ultimate question), but since the question is auxiliary, it con-
tains no multiplication, only addition. More precisely, it should
correspond to the following grammar:

〈expression〉 ::= 〈term〉 | 〈term〉 ‘+’ 〈expression〉
〈term〉 ::= 〈number〉 | ‘(’ 〈expression〉 ‘)’

〈number〉 ::= ‘0’ . . . ‘9’ [〈number〉]

The constructors do not want to risk again, and they need your
help to give just something to their clients. They ask you to
reconstruct the question based on the corrupted computer answer
which they managed to retrieve.

Input

The input file contains exactly one line — the corrupted auxiliary
question. It is a non-empty string which is at most 1000 symbols
long. This string contains only symbols ‘+’, ‘(’, ‘)’, and ‘0’, . . . ,
‘9’.

Output

Output the reconstructed auxiliary question. It’s guaranteed that
there exists a correct question of less than 5000 symbols and your
solution must also be shorter than that. If there is more than one
solution, output any one.

Example

auxiliary.in auxiliary.out

1+0+1) (1+0+1)

2009 2009

)(()((0)+((0)+(0))

Problem B. Bureaucracy
Input file: bureau.in

Output file: bureau.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Long ago, in a kingdom far, far away the king decided to keep a
record of all laws of his kingdom. From that moment whenever
a new law was passed, a corresponding record was added to the
law archive.

Many centuries later lawyers discovered that there were only two
types of laws in the kingdom:

• direct law, that states a new norm;

• canceling law, that cancels one of the previous laws.

The law is considered active if and only if there is no active law
that cancels it.

You are to write program that finds out which laws are still active.

Input

The first line of the input file contains an integer number n
(1 ≤ n ≤ 100 000) — the number of passed laws.

The following n lines describe one law each. Each description has
one of the following formats:

• “declare”, meaning that a direct law was passed.

• “cancel i”, where i is the number of law being cancelled by
this one.

The laws are numbered from one.

Output

The first line of the output file must contain the number of active
laws. Following lines must contain numbers of these laws listed
in increasing order.

Example

bureau.in bureau.out

5

declare

cancel 1

declare

cancel 2

cancel 3

3

1 4 5

Problem C. Circles on a Screen
Input file: circles.in

Output file: circles.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Yesterday Andrew wrote a program that draws n white circles on
a black screen. The screen is monochrome and it has a resolution
w×h pixels. Pixels are numbered from upper left corner (0, 0) to
bottom right one (w − 1, h − 1).

A circle with the center at pixel (xc, yc) and the radius
r consists of the pixels with coordinates (x, y) such that√

(xc − x)2 + (yc − y)2 ≤ r. If the circle does not fit on the
screen, it is truncated. If some pixel belongs to two or more
circles, it is white.

Page 1 of 6

SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

The resulting picture was very nice, so Andrew decided to copy
it to his wall. He has white wallpaper and he can only draw some
parts of wall into black. Now he wants to know the amount of
paint he needs. He copies the picture exactly pixel-to-pixel, so
you should write a program that calculates the number of black
pixels left on a screen after drawing n circles.

Input

In the first line of input file there are three integers: w, h, and n
(1 ≤ w, h ≤ 20 000; 1 ≤ n ≤ 100). Each of the following n lines
contains descriptions of the circle. In i + 1-th line there are three
integers: xi, yi, ri (0 ≤ xi < w; 0 ≤ yi < h; 0 ≤ ri ≤ 40 000).
They denote a circle with the center at pixel (xi, yi) and radius
ri.

Output

You should output exactly one number — the number of black
pixels left on the screen.

Example

circles.in circles.out

5 3 2

1 1 1

3 1 1

6

12 9 2

3 3 2

7 5 4

51

Note: The picture corresponds to the second example.

Problem D. Dragon’s Question
Input file: dragon.in

Output file: dragon.out

Time limit: 3 seconds
Memory limit: 256 megabytes

In a land far-away there lives a noble man, and he has three
sons. The elder of them is very clever, his especial strength is
calculation: he can easily count a determinant of fifth degree in
his mind without paper and pencil. The middle brother is also
very talented, he is particularly strong in theoretic questions. But
the younger brother has absolutely no talent in mathematics.

One day they went for a walk. Suddenly a wind started to blow
and something closed the sun from them: it was a hungry dragon,
returning to his lair from unsuccessful hunt.

“Hey, boys. I will give you a problem, and if you do not solve it,
nothing will save you!” — said the dragon.

The elder brothers smiled ironically. Of course, they were so clever
that no dragon could ask them a question they were not able to
answer.

“Give me a positive integer number which is divisible by d and
has exactly n digits in it, assuming that d is equal to forty-five
and n is equal to three!” — was the dragon’s question.

“One hundred and thirty-five.” — answered the elder brother.

“Good, go where you want. But I will return and ask you a
similar question in a year.” — said the upset hungry dragon and
flew away.

A year passed, and the elder brother got married and left his
parents’ home. Two younger brothers went for a walk discussing
this event, and met the dragon again.

“Hey boys, give me a positive integer number which is divisible by

twenty three and has exactly one digit in it” — asked the dragon.

“No solution” — answered the middle brother.

“You are still too clever, go where you want. But I will return and
ask you a similar question.” — said the dragon and flew away.

Another year passed and the middle brother got married and left
his parents’ home. The younger brother now does not go out-
side, because he does not have enough knowledge to answer the
dragon’s questions. Please, help him and write a program — the
boy is very afraid.

Input

The input file contains the only line with numbers n and d
(1 ≤ n ≤ 1000; 1 ≤ d ≤ 1 000 000).

Output

The first and only line of the output file must contain the answer
to be given to the dragon — either a n-digit number (without
leading zeroes) divisible by d or a string “No solution”.

Example

dragon.in dragon.out

20 1 10000000000000000000

1 23 No solution

1 4 4

Problem E. Enigmatic Device
Input file: enigmatic.in

Output file: enigmatic.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Yes, it happened! The first contact! Aliens will visit the Earth
in 2010! And they promised to bring an enigmatic device which
cannot be constructed using existing Earth technologies. Most
of the scientists of the world think so! All newspapers already
published their leading articles about it.

This device will accept an integer sequence {ai} as its initial input.
After that, it can perform the following two operations:

1. Take an interval [l; r] and perform ai ← a2
i mod 2010 for all

ai such that l ≤ i ≤ r.
2. Take an interval [l; r] and output the sum of all ai such that

l ≤ i ≤ r. Note that the sum is not taken modulo 2010.

The amazing thing about this device is that it is able to perform
50 000 operations of this kind with a sequence of 50 000 numbers
within 3 seconds. Nobody could do it before!

But Roman does not believe in aliens and thinks that it is only a
great hoax made by somebody just to win another million bucks
on the stock exchange. His goal is to prove this. So he hired you
to write a program to simulate this device.

Given an integer sequence ai and a sequence of operations, write a
program which simulates the behaviour of the strange alien device.

Input

The first line of the input contains the length of the sequence n
(1 ≤ n ≤ 50 000). The second line contains n numbers ai forming
the initial sequence (0 ≤ ai ≤ 2009). The third line contains the
number of operations m (1 ≤ m ≤ 50 000). The rest of file con-
tains m lines, each describing one operation. The j-th operation
is described by its kind kj (‘1’ for squaring, ‘2’ for calculating the
sum), followed by two integers lj and rj (1 ≤ lj ≤ rj ≤ n).

Page 2 of 6

SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

Output

For each operation of the second kind, write their output on the
separate line, in order they appear in the input.

Example

enigmatic.in enigmatic.out

3

17 239 999

4

2 1 3

1 2 3

2 2 3

2 1 2

1255

1882

858

Problem F. Four Points
Input file: four.in

Output file: four.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Mike is a magician. One of his inventions is a labyrinth that
gives supernatural abilities to every person who walks through it.
The labyrinth has an extremely complicated internal structure,
however, for an external observer it is just a square on the ground.

Mike has found some suitable place for labyrinth on the seashore.
He drew its border on the sand and marked four points with small
stones so that each side of the square contained exactly one stone
and no stone was placed in the corner.

As no picture drawn on the sand stays forever, after a while Mike
found only the stones on their places. Now he wonders where the
marked square could have been.

Your task is to restore some possible place of the labyrinth and
return four corners of the square as a result. You may assume
that the seashore is a plane and the stones are points on it.

Input

The first four lines of the input file contain two integer
numbers xi and yi each — coordinates of the i-th point
(−1 000 ≤ xi, yi ≤ 1 000). No two points coincide, no three points
are collinear.

Output

Output four lines containing two real numbers each — coordinates
of the vertices of the square. Vertices should be listed in either
clockwise or counterclockwise order. Coordinates must be precise
up to 6 digits after the decimal point.

If there are multiple solutions, output any of them. If there is no
solution, write four pairs of zeroes instead of the coordinates.

Example

four.in four.out

6 13

11 12

9 2

2 6

6 0

15 6

9 15

0 9

0 0

5 5

5 0

3 2

0 0

0 0

0 0

0 0

Problem G. Grand Theft Auto Wheel
Input file: gtaw.in

Output file: gtaw.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Tommy is a wheel thief. His job was formerly as easy as pie: you
lift a car, turn off wheel bolts, take the wheel and run away. But
now everybody uses “anti-theft” bolts.

Anti-theft bolt is designed in such a way that it cannot be turned
off with a usual wrench. Its head is a cylinder with a hole. To
turn the anti-theft bolt off you need a right wrench. The wrench
has a ring with a lug that exactly matches the shape of the bolt
head.

Bolt head and corresponding wrench.

Of course Tommy cannot get wrenches for all possible anti-theft
bolts. But sometimes it is possible to turn off the bolt with the
wrench that does not match it exactly.

More formally, the wrench can turn off the bolt if and only if two
following conditions are satisfied:

• the ring of the wrench can be joined with the cylinder of the
bolt head in such a way that the lug of the wrench is inside
the hole of the bolt head;

• the wrench cannot make a full turn when the bolt is fixed.

For example:

Page 3 of 6

SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

+ =

+ =

+ =

Situations where the bolt can be turned off with improper
wrench.

Due to technical reasons, the shape of both — hole of the bolt
head and lug of the wrench, are always a star-shaped polygons
with theirs centers in the center of the bolt or wrench. So if it is
described in polar coordinate system as a sequence of pairs (ri, ϕi)
then ϕi+1 < ϕi and ϕi+1 − ϕi < 180◦.

ϕi

r i

(ri, ϕi)

Help Tommy do find out if it is possible to turn off the bolt with
the wrenches he has.

Input

The first line of input file contains two integer numbers n and r —
the number of wrenches and the radii of the bolt head and the
wrenches’ rings (1 ≤ n ≤ 10, 1 ≤ R ≤ 1000).

The following lines describe the bolt head. Description consists
of an integer number m — number of vertices (3 ≤ m ≤ 100) and
m pairs of integer numbers (ri, ϕi) (1 ≤ ri < R; 0◦ ≤ ϕi < 360◦;
ϕi < ϕi+1; ϕi+1 − ϕi < 180◦; ϕm − ϕ1 > 180◦).

The rest lines describe the wrenches in the same format.

Output

The first line of the output file must contain the number of
wrenches that can be used to turn off the bolt. The following
lines must contain wrench numbers in increasing order.

Example

gtaw.in gtaw.out

3 10

4

9 0

9 90

9 180

9 270

4

8 45

8 135

8 225

8 315

4

6 45

6 135

6 225

6 315

3

7 0

7 90

6 225

2

1 3

Problem H. Homo or Hetero?
Input file: homo.in

Output file: homo.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Consider a list of numbers with two operations:

• insert number — adds the specified number to the end of
the list.

• delete number — removes the first occurrence of the spec-
ified number from the list. If the list does not contain the
number specified, no changes are performed.

For example: the result of the insertion of a number 4 to the list
[1, 2, 1] is the list [1, 2, 1, 4]. If we delete the number 1 from this
list, we get the list [2, 1, 4], but if we delete the number 3 from
the list [1, 2, 1, 4], the list stays unchanged.

The list is homogeneous if it contains at least two equal numbers
and the list is heterogeneous if it contains at least two different
numbers. For example: the list [2, 2] is homogeneous, the list
[2, 1, 4] is heterogeneous, the list [1, 2, 1, 4] is both, and the empty
list is neither homogeneous nor heterogeneous.

Write a program that handles a number of the operations insert
and delete on the empty list and determines list’s homogeneity
and heterogeneity after each operation.

Input

The first line of the input file contains an integer number n — the
number of operations to handle (1 ≤ n ≤ 100 000).

Following n lines contain one operation description each. The
operation description consists of a word “insert” or “delete”,
followed by an integer number k — the operation argument
(−109 ≤ k ≤ 109).

Output

For each operation output a line, containing a single word, de-
scribing the state of the list after the operation:

• “both” — if the list is both homogeneous and heterogeneous.

Page 4 of 6

SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

• “homo” — if the list is homogeneous, but not heterogeneous.

• “hetero” — if the list is heterogeneous, but not homoge-
neous.

• “neither” — if the list is neither homogeneous nor hetero-
geneous.

Example

homo.in homo.out

11

insert 1

insert 2

insert 1

insert 4

delete 1

delete 3

delete 2

delete 1

insert 4

delete 4

delete 4

neither

hetero

both

both

hetero

hetero

hetero

neither

homo

neither

neither

Problem I. Image Recognition
Input file: image.in

Output file: image.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Irene works for Novel Efforts in Effective Recognition of Charac-
ters (NEERC). Her new project concerns image recognition using
robots.

Since the approach is quite innovative, Irene starts with a very
simple model first. She fixed d images which are called digits 0 to
d− 1. Each image is a w×h rectangle filled with white and black
unit squares (call them pixels). All images are distinct (that is,
each two images differ in at least one pixel).

The robot is placed in the upper left pixel of one of the images.
It starts executing a program written in a specific programming
language described below. The task of the robot is to recognize
which of the d images it was placed onto.

The programming language for the robot consists of the following
commands:
‘U’, ‘D’, ‘L’, ‘R’ — movement commands. The robot moves one

pixel up, down, left, or right respectively. If a movement
command moves robot outside the image, the task is failed.

‘(’ 〈subprogramw〉 ‘:’ 〈subprogramb〉 ‘)’ — conditional oper-
ator. The robot checks the color of the pixel underneath
itself. If it is white then 〈subprogramw〉 is executed, other-
wise 〈subprogramb〉 is executed.

‘0’, ‘1’, . . . , ‘9’ — recognized image commands. The robot must
execute one of these commands when it knows which im-
age it was placed onto. After such command, the program
terminates.

Each movement command takes one time unit to execute. The ex-
ecution of conditional operator and image recognized commands
is instantaneous.

Irene is interested in the program that always works correctly.
That is, if a robot is placed onto the image corresponding to the
digit i, then the execution of the program must end with the
command ‘i’.

Given the set of images, design a correct program for the robot,
such that its execution time in the worst case is minimal.

Input

The first line contains three integers d, h, and w (1 ≤ d ≤ 10;
1 ≤ h, w ≤ 10) — the number of considered images, the height
and the width of each image.

The rest if the input file contains d descriptions of images. Each
description consists of h lines of length w. All characters are either
‘B’ or ‘W’, representing a black or a white pixel respectively.

Image descriptions are given in the order from 0 to d − 1. De-
scriptions are separated by an empty line.

Output

Return a correct program for the robot with minimal possible
worst-case execution time. If there are multiple possible pro-
grams, output any of them.

All whitespace is ignored when parsing a program.

Example

image.in image.out

3 5 4

WBBW

BWWB

BWWB

BWWB

WBBW

WWBW

WBBW

BWBW

WWBW

WWBW

WBBW

BWWB

WWBW

WBWW

BBBB

D(1:D(2:0))

The robot has to distinguish between these three images in the
example.

Problem J. Jealous Numbers
Input file: jealous.in

Output file: jealous.out

Time limit: 3 seconds
Memory limit: 256 megabytes

There is a trouble in Numberland, prime number p is jealous of
another prime number q. She thinks that there are more integer

Page 5 of 6

SPb NRU ITMO Training 05
ACM Northern Subregional Contest 2009, September 24, 2013

numbers between a and b, inclusively, that are divisible by greater
power of q than that of p. Help p to get rid of her feelings.

Let α(n, x) be maximal k such that n is divisible by xk. Let us
say that a number n is p-dominating over q if α(n, p) > α(n, q).
Find out for how many numbers between a and b, inclusive are
p-dominating over q.

Input

The first line of the input file contains a, b, p and q
(1 ≤ a ≤ b ≤ 1018; 2 ≤ p, q ≤ 109; p 6= q; p and q are prime).

Output

Output one number — how many numbers n between a and b,
inclusive, are p-dominating over q.

Example

jealous.in jealous.out

1 20 3 2 4

In the given example 3, 9, 15 and 18 are 3-dominating over 2.

Problem K. Kripke Model
Input file: kripke.in

Output file: kripke.out

Time limit: 3 seconds
Memory limit: 256 megabytes

Testing and quality assurance are very time-consuming stages of
software development process. Different techniques are used to
reduce cost and time consumed by these stages. One of such
techniques is software verification. Model checking is an approach
to the software verification based on Kripke models.

A Kripke model is a 5-tuple (P, S, S0, R, L), where P is a finite set
of atomic propositions, S is a finite set of model’s states, S0 ⊂ S
is a set of initial states, R ⊂ S × S is a transition relation, and
L ⊂ S×P is a truth relation. In this problem we will not take ini-
tial states into account and relation R will be a reflexive relation,
so R(s, s) will be true for all states s ∈ S.

A path π beginning in state s in the Kripke model is an infinite
sequence of states s0s1 . . . such that s0 = s, and for each i ≥ 0
the (si, si+1) ∈ R.

Temporal logic and its subset Computational tree logic (CTL) are
used to describe propositions qualified in terms of time. Kripke
models are often used to check properties, described in CTL.

There are two types of formulae in CTL: state formulae and path
formulae. The values of state and path formulae are evaluated for
states and paths correspondingly.

If p ∈ P then p is a state formula that holds in state s iff (s, p) ∈ L.

If f is a path formula, then Af and Ef are state formulae, where
A and E are path quantifiers:

• Af holds in a state s, iff f holds for each path beginning in
the state s;

• Ef holds in state s, iff there exists a path π, beginning in
the state s, such that f holds for π.

If f and g are state formulae, then Gf and fUg are path formulae,
where G and U are temporal operators:

• Gf (Globally) holds for a path π = s0s1 . . . iff for each i ≥ 0
the formula f holds in the state si;

• fUg (Until) holds for a path π = s0s1 . . . if there exists i ≥ 0
such that f holds for each state in the range s0, s1, . . . , si−1,
and g holds in state si;

To verify a property described by a state formula f means to
find all states, f holds for. Verification of an arbitrary property
is a pretty complex problem. Your problem is much easier —
you are to write a program that verifies a property described by
a temporal logic formula E(xU(AGy)), where x and y are some
atomic propositions.

Input

The first line of the input file contains three positive integer num-
bers n, m and k — number of states, transitions and atomic
propositions (1 ≤ n ≤ 10 000; 0 ≤ m ≤ 100 000; 1 ≤ k ≤ 26).

The following n lines describe one state each. The state i
(1 ≤ i ≤ n) is described by ci — a number of atomic proposi-
tions which are true for this state and a space-separated list of
these atomic propositions (0 ≤ ci ≤ k). Atomic propositions are
denoted by first k small English letters.

Next m lines describe transitions. Each of them contains two
integer numbers s and t (1 ≤ s, t ≤ n; s 6= t) — the transition
from state s to state t. The verified Kripke model contains implicit
loop transitions (s, s) for each state s (they are not listed in the
input file). No transition is listed in the input file twice.

The last line of the input file contains the formula of the property
to be verified. This formula always has the form “E(xU(AGy))”,
where ‘x’ and ‘y’ are some atomic propositions.

Output

The first line of the output file must contain the number of states
for which the verified property holds. The following lines must
contain the numbers of these states listed in increasing order.

Example

kripke.in kripke.out

7 8 2

1 a

1 a

2 a b

1 b

1 b

1 a

1 a

1 2

2 3

3 4

4 5

5 3

2 6

6 7

7 6

E(aU(AGb))

5

1

2

3

4

5

Page 6 of 6

