Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

Problem A. A Knight's Journey

Input file:
Output file:

journey.in
journey.out

The knight is getting bored of seeing the same black and white squares
again and again and has decided to make a journey around the world.
Whenever a knight moves, it is two squares in one direction and one
square perpendicular to this.

The world of a knight is the chessboard he is living on. Our knight lives
on a chessboard that has a smaller area than a regular 8 x 8 board, but
it is still rectangular. Can you help this adventurous knight to make
travel plans?

Find a path such that the knight visits every square once. The knight
can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following
lines contain n test cases. Each test case consists of a single line with
two positive integers p and g, such that 1 < pg < 26.

This represents a px q chessboard, where p describes how many different
square numbers 1,...,p exist, ¢ describes how many different square
letters exist. These are the first g letters of the Latin alphabet: A,

Output

The output for every scenario begins with a line containing “Scenario
#i:7”, where ¢ is the number of the scenario starting at 1. Then print
a single line containing the lexicographically first path that visits all
squares of the chessboard with knight moves followed by an empty line.
The path should be given on a single line by concatenating the names
of the visited squares. Each square name consists of a capital letter
followed by a number.

If no such path exist, you should output impossible on a single line.

Example

journey.in journey.out
Scenario #1:

Al

BN = W
w W =

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

Problem B. Line Segments

Input file:
Output file:

line.in
line.out

Line segments are a very common element in computational geometry.
A line segment is the set of points forming the shortest path between two
points (including those points). Although they are a very basic concept
it can be hard to work with them if they appear in huge numbers unless
you have an efficient algorithm.

Given a set of line segments, count how many distinct pairs of line
segments are overlapping. Two line segments are said to be overlapping
if they intersect in an infinite number of points.

Input
The first line contains the number of scenarios.
Each scenario starts with the number n of line segments

(1 < n <100000). Then follow n lines consisting of four integers z1, y1,
z2, y2 in the range [0,1000000] each, representing a line segment that
connects the points (z1,y1) and (x2,y2). It is guaranteed that a line
segment does not degenerate to a single point.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where 7 is the number of the scenario starting at 1. Then print a
single line containing the number of distinct pairs of overlapping line
segments followed by an empty line.

Example
line.in line.out

2 Scenario #1:
8 3

1122

2233 Scenario #2:
1331 0

10 0 20 O

20 0 30 O

15 0 25 0

50 0 100 0

70 0 80 O

1

0011

Problem C. Pimp My Ride

Input file:
Output file:

pimp.in
pimp.out

Today, there are quite a few cars, motorcycles, trucks and other vehicles
out there on the streets that would seriously need some refurbishment.
You have taken on this job, ripping off a few dollars from a major TV
station along the way.

Of course, there’s a lot of work to do, and you have decided that it’s
getting too much. Therefore you want to have the various jobs like
painting, interior decoration and so on done by garages. Unfortunately,
those garages are very specialized, so you need different garages for
different jobs. More so, they tend to charge you the more the better the
overall appearance of the car is. That is, a painter might charge more
for a car whose interior is all leather. As those "surcharges"depend
on what job is done and which jobs have been done before, you are
currently trying to save money by finding an optimal order for those
jobs.

Individual jobs are numbered 1 through n. Given the base price p for
each job and a surcharge s (in US$) for every pair of jobs (¢,j) with
1 # j, meaning that you have to pay additional $s for job 4, if and only
if job j was completed before, you are to compute the minimum total
costs needed to finish all jobs.

Input

The first line contains the number of scenarios. For each scenario, an
integer number of jobs n, 1 < n < 14, is given. Then follow n lines, each
containing exactly n integers. The i-th line contains the surcharges that
have to be paid in garage number ¢ for the i-th job and the base price
for job ¢. More precisely, on the i-th line, the i-th integer is the base
price for job i and the j-th integer (j # ¢) is the surcharge for job ¢ that
applies if job j has been done before. The prices will be non-negative
integers smaller than or equal to 100000.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where 7 is the number of the scenario starting at 1. Then print a
single line:

“You have officially been pimped for only $p"

with p being the minimum total price. Terminate the output for the
scenario with a blank line.

Page 1 of 6

Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

Example

pimp.in

2

2

10 10

9000 10

3

14 23 0
014 0

1000 9500 14

pimp.out

Scenario #1:
You have officially been pimped for only $30

Scenario #2:
You have officially been pimped for only $42

Problem D. A Bug's Life

Input file:
Output file:

bugs.in
bugs.out

Professor Hopper is researching the sexual behavior of a rare species
of bugs. He assumes that they feature two different genders and that
they only interact with bugs of the opposite gender. In his experiment,
individual bugs and their interactions were easy to identify, because
numbers were printed on their backs.

Given a list of bug interactions, decide whether the experiment supports
his assumption of two genders with no homosexual bugs or if it contains
some bug interactions that falsify it.

Input

The first line of the input contains the number of scenarios. Each
scenario starts with one line giving the number of bugs (at least one, and
up to 2000) and the number of interactions (up to 1000000) separated
by a single space. In the following lines, each interaction is given in the
form of two distinct bug numbers separated by a single space. Bugs are
numbered consecutively starting from one.

Output

The output for every scenario is a line containing “Scenario #i:”, where
i is the number of the scenario starting at 1, followed by one line saying
either “No suspicious bugs found!” if the experiment is consistent
with his assumption about the bugs’ sexual behavior, or “Suspicious
bugs found!” if Professor Hopper’s assumption is definitely wrong.

Example
bugs.in bugs.out
2 Scenario #1:
33 Suspicious bugs found!
12
23 Scenario #2:
13 No suspicious bugs found!
42
12
34

Problem E. Rdeaalbe

Input file:
Output file:

rdeaalbe.in
rdeaalbe.out

As you probably know, the human information processor is a wonderful
text recognizer that can handle even sentences that are garbled like the
following:

The ACM Itrenntaoial Clloegaite Porgarmmnig Cnotset (IPCC)
porvdies clolgee stuetnds wtih ooppriuntetiis to itnrecat
wtih sutednts form ohetr uinevsrtieis.

People have claimed that understanding these sentences works in
general when using the following rule: The first and last letters of each
word remain unmodified and all the characters in the middle can be
reordered freely.

Since you are a skeptical ACM programmer, you immediately set on
to write the following program: Given a sentence and a dictionary of
words, how many different sentences can you find that could potentially
be mapped to the same encoding?

Input

The first line contains the number of scenarios. Each scenario begins
with a line containing the number n of words in the dictionary
(0 < n < 10000), which are printed on the following n lines. After
this there is a line containing the number m of sentences that should be
tested with the preceding dictionary (0 < m < 10000) and then m lines
containing those sentences. The sentences consist of letters from a..z,
A..Z and spaces only and have a maximal length of 10000 characters.
For each word in the dictionary a limitation of 100 characters can be
assumed.

Output

The output for every scenario begins with a line containing “Scenario
#i:”, where 7 is the number of the scenario starting at 1. For each
sentence output the number of sentences that can be formed on an
individual line. It is guaranteed that this number can be expressed using
a signed 32-bit datatype. Terminate the output for the scenario with a
blank line.

Example

rdeaalbe.in

2

3
ababa
aabba
abcaa
2
ababa
abbaa
14
bakers
brakes
breaks
binary
brainy
baggers
beggars
and

in

the
blowed
bowled
barn
bran

1
brainy bakers and beggars bowled in the barn

rdeaalbe.out

Scenario #1:
2
2

Scenario #2:
48

Problem F. Acid Text

Input file:
Output file:

acid.in
acid.out

A couple of months ago the web standards project (WaSP) has come
up with a test for modern browsers and their CSS implementation
called acid2. This test ensures that all the browsers have similar results
when it comes to parsing and displaying cascaded style sheet files
(CSS) for HTML. Since you want to beat all the other text-based
browsers on standard compliance you directly start implementing the
CSS capabilities into your favorite text-browser Lynks.

Your text-browser will be given a set of graphic files and a simplified
css-style-sheet. A graphic is defined by a name, height, width and
a 2-dimensional array of characters. All characters are to be printed

Page 2 of 6

Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

except for the character .

L]

which denotes a transparent pixel. Here is

an example picture:

owl.png 5 7

|0...01

Given the style-sheet your task is it to produce the graphical result
that the browser is supposed to display. A CSS-file is made up from a
number of entries where each entry looks like this:

#<id> {

pos-x : <x> px ;

pos-y : <y> px ;

position : <relative = <id of graphic>|absolute> ;
file : <filename> ;

layer : <layer-number> ;

}

The following rules hold for the CSS-entries:

Lines Each CSS-entry will be given on exactly 7 lines as in the input
above.

Ordering Each CSS-entry will contain exactly the 5 attributes pos-x,
pos-y, position, file and layer, in this order, each attribute on a separate
line.

Whitespace There may be zero or more white-spaces (spaces and tabs)
at the beginning of lines, at the end of lines or everywhere where the
sample above has a space.

Here are the rules for composing the picture:
Background The background is assumed to be black (i.e. just spaces).

Positioning The top left corner of the viewing device is assumed to be
x : 0,y : 0. Absolute positioning always is based on this top-left corner.
Relative positioning information is always based on the topleft pixel of
another graphic. There will not be any circular references between CSS
elements. All resulting positions will be zero or greater in x and y.

Layering Graphics with a higher layer number are to be printed after
graphics with a lower layer number. Graphics with the same layer
number are to be printed in the order they appear in the CSS.

Input

The first line of the input is the number of scenarios that will follow. For
each scenario the following information is given: The first line contains
the number of files to follow (at least one, at most 100), each of which
is given by a space separated triple of a filename f, a height h, a width
w (1 < w,h <100) and then h lines, each with exactly w characters.
Following the file definition is a single line with a number m (at least
one, at most 500), which is followed by a CSS file of m entries.

You can assume the resulting picture to be at most 1000 x 1000
characters large. All coordinates in CSS entries will be given as integers
with an absolute value less than 1000000. All filenames and identifiers
are made up from alphanumeric characters and dots only. No two files
have the same name and no two identifiers are equal. The layer attribute
will be at least 0 and at most 1000000.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where ¢ is the number of the scenario starting at 1. For each
scenario print the resulting picture from overlaying all the given
graphics following the instructions in the CSS file. Your result for
each scenario should be rectangular as small as possible. However,
transparent pixels always belong to the resulting picture, even if they are
located directly at the border. The top-left corner of the result should
always contain position (0, 0). All empty areas should be padded with
spaces. Terminate the output for every scenario with a blank line.

Example

acid.in

eye.jpg 1 1

0

nose.bmp 1 1

v

mouth.png 1 3

<_>

5

#bg {
pos-x: 1 px;
pos-y: 1 px;
position: absolute;
file: bg.png;

layer: 0;
}
#leftEye {
pos-x: 1 px;
pos-y: 1 px;
position: relative=bg;
file: eye.jpg;
layer: 1;
¥
#rightEye {
pos-x: 4 px;
pos-y: O px;
position: relative=leftEye;
file: eye.jpg;
layer: 1;
¥
#nose {
pos-x: 2 px;
pos-y: 1 px;
position: relative=leftEye;
file: nose.bmp;
layer: 1;
}
#mouth {
pos-x: -1 px;
pos-y: 1 px;
position: relative = nose;
file: mouth.png;
layer: 1;
}
acid.out

Scenario #1:

Problem G. Diophantus of Alexandria

Input file:
Output file:

diophantus.in
diophantus.out

Diophantus of Alexandria was an Egypt mathematician living in
Alexandria. He was one of the first mathematicians to study equations
where variables were restricted to integral values. In honor of him, these
equations are commonly called diophantine equations. One of the most
famous diophantine equation is ™ + y™ = 2". Fermat suggested that
for n > 2, there are no solutions with positive integral values for =, y
and z. A proof of this theorem (called Fermat’s last theorem) was found
only recently by Andrew Wiles.

Page 3 of 6

Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

Consider the following diophantine equation:
1 1 1
J’_

where z,y,n € Nt.

Diophantus is interested in the following question: for a given n, how
many distinct solutions (i. e., solutions satisfying x < y) does this
equation have? For example, for n = 4, there are exactly three distinct
solutions:

1+171
5 20 4
1+171
6 12 4
1+171
8 8 4

Clearly, enumerating these solutions can become tedious for bigger
values of n. Can you help Diophantus compute the number of distinct
solutions for big values of n quickly?

Input

The first line contains the number of scenarios. Each scenario consists
of one line containing a single number n (1 < n < 109).

Output

The output for every scenario begins with a line containing “Scenario
#i:”, where ¢ is the number of the scenario starting at 1. Next, print a
single line with the number of distinct solutions of the equation for the
given value of n. Terminate each scenario with a blank line.

Example
diophantus.in diophantus.out
2 Scenario #1:
4 3
1260

Scenario #2:
113

Problem H. Traveling Queen Problem

Input file:
Output file:

queen.in
queen.out

Black has been defeated and the white army has won, but unfortunately
the white king has been killed in the fight, and so the white queen is
looking for a new mate. She is unsure whom of the knights to marry and
has decided to visit them all. Afterwards she plans to see the bishop to
arrange for the marriage.

L L R e L = T T =]

Given a chessboard with the current situation, find the shortest number
of moves such that the queen visits every knight and, finally, visits the
bishop.

The queen visits by standing on one of the (at most) eight neighbouring
squares and she does not necessarily have to move between two visits.

For each move the queen can go an arbitrary number of squares in one
of the eight directions (horizontal, vertical or diagonal). No move may
pass through or stop at a non-empty square.

Input

The first line contains the number of scenarios. Each scenario consists of
a chessboard description. The rows 8,...,1 are given in this order, one
line per row. Each line contains 8 characters to represent the squares at
columns a, ..., h of this row. Each description is followed by an empty
line. There is one character Q to denote the starting position of the
queen, and one B to denote the square on which the bishop stands.
There is an arbitrary number of pawns, given as P, who simply block
movement, as well as 2 — 14 knights denoted as N. All other squares
are given as ‘.’ and are empty.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where ¢ is the number of the scenario starting at 1.

Then print the lexicographical first path that contains the minimal
number of moves, ends adjacent to the bishop and visits each knight at
least once. The path shall be given on a single line by concatenating in
order the names of the squares on which the queen stands. Each square
name consists of a small letter followed by a decimal digit. If no such
path exists, output “impossible” on a single line. Terminate the output
for the scenario with a blank line.

Example
queen.in queen.out
2 Scenario #1:
....... Q h8h2e5d4b2
P.P..
..PNP. Scenario #2:
.NP.P impossible
..B.....
B.P.....
LWPol
PPP..N
N...Q..

Problem I. Mine Map

Input file:
Output file:

minemap.in
minemap.out

After the recent theft of the problemset for the ACM ICPC World
finals (by notorious british super spy James B.-we reported on this
some weeks ago), the ACM has decided to store all future problemsets
in a high security building. The security board endowed with the job of
creating this new vault had the brilliant idea to build it in the form of a
giant maze. Essentially, this maze consists of a bunch of square rooms,
arranged in the form of a square matrix, with all the rooms connected to
each other by a series of doors. Going through them is the only way to
get to the center where the problemsets are stored. Obviously, it is not
that hard to get through a maze in which all room are connected to each
other. So, to make things more dangerous for would-be intruders, some
of the rooms are booby trapped with mines. If somebody enters the
central room of the vault containing the problemsets, these mines are
activated. Afterwards, opening a door leading to a room with a mine
in it will trigger an alarm, and all security doors close immediately,
trapping the intruder. This way, the ACM can find out who sent the
spy and disqualify all teams of that nation.

But recently the security board became aware of a new scanning device
able to detect the mines, once they are activated. This detector could
be used from within any of the rooms of the vault, and would be able to
tell the user whether any of the up to eight adjacent rooms contains a
mine, or not. Unfortunately, the board already ordered a batch of these

Page 4 of 6

Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

mines, and now doesn’t want to have to admit that this might have
been a mistake. Instead, they simply want to spread the mines in such
a way that it is difficult to leave the center by just using the device.
Your are assigned to the team building the vault in order to help them
evaluate their designs.

A vault has the form of a quadrangle, with sides that have odd length.
Each room in the vault can be described by a pair of coordinates,
indicating that horizontal and vertical offset relative to a fixed corner of
the building. In each room, there are doors leading to the neighboring
rooms; more importantly, the mine detector can detect mines in all of
the up to eight adjacent rooms. The device can only tell you whether
there are any mines nearby, but not how many there are. Your job is
to create a special map from each of the vault design drafts. On the
map, mark all rooms somebody starting from the center room (which is
guaranteed to not contain a mine) could safely reach with the help of the
new detector and the following simple strategy: When you are in a room
where the detector reports no adjacent mines, search all surrounding
rooms. Otherwise, do not risk triggering a mine and do not advance
farther from this room (you might reach one of the surrounding rooms
via another “safe” route later on, though).

Thus, if the intruder is in a room not next to any mines, he will be
able to go to all surrounding rooms- mark such a room with a “”. If
the intruder enters a room which is next to one or more mines, he will
retreat-mark these rooms with a “#”. To be able to verify your work,
the security board also wants you to mark the position of each mine
with a “*”. Finally, all remaining rooms should be marked with a “?”.

Input

The first line contains the number of scenarios. Each scenario starts
with a line containing the odd integer n (1 < n < 300) of the vault,
indicating the length of one of its outer walls. This is followed by the
number m of mines (which is positive and only limited by the number
of rooms in the vault).

Next comes m lines, each containing two integers 7 and ¢ (1 < r,¢ < n),
which give the row and the column of a mine.
Output

The output for every scenario begins with a line containing “Scenario
#i:”, where ¢ is the number of the scenario starting at 1. Then print
an ASCII representation of the map of the vault as described above.
Terminate the output for the scenario with a blank line.

Example

minemap.in minemap.out

Scenario #1:
%7
HY
2 777

Scenario #2:
TTRTT
THLT
*4t .k
THEHT
?P%k??

w Ul W

1 Scenario #3:
*#. ..

O NOTOTWERE WD O P WwWw

Problem J. Knights of the Round Table

Input file:
Output file:

knights.in
knights.out

It is the year 573 AD. King Arthur rules all of Britain. He is a just
ruler, loved by the people. But governing such a big country is a
daunting task, and doing it requires a lot of effort. Luckily, in this
HE is aided by the most noble Knights of the Round Table. Initially,
this body was composed only out of the most valiant heroes to be found

in the whole kingdom, like Sir Gawain, Sir Lancelot, or Sir Galahad.
Recently, though, King Arthur found it to be a political necessity to
admit additional members to this most holy round. The main reason
for this is that due to the lasting peace under his reign, the guilds
demanded more influence on the ruling of the country. "After all, in
times of peace you need bread more than swords, don’t you? said the
head of the guild of bakers. Being an exceptionally just and noble ruler,
Arthur agreed.

This has lead to a certain swelling of the ranks of the "knights"of the
round table. Arthur found that he had to order a much bigger table from
the guild of carpenters (who in turn immediately demanded some seats
on it), and subsequently had to add a new wing to Castle Camelot to
contain it (you may guess what the stone masons requested afterwards).

As a result, the weekly meetings of the Round Table are rather crowded
now. In fact, there are so many people that it can be quite hard to
understand each other when sitting at opposites sides of the table. To
find out how big the problem really is, Arthur wants you to compute
how far away the two farthest members of the Round Table sit from
each other. Things are complicated by the fact that there is only a
finite number of people sitting at the table, and they are not spread
equally around the table-some of them are sitting closely together (to
discuss important matters), while others prefer to distance themselves
from their neighbors (e. g., the representative of the guild of healers and
the head of the guild of assassins).

Input

The first line contains the number of scenarios. Each scenario starts with
a line containing the number n of chairs (3 < n < 10000). After that
follow n lines, each consisting of two integers p and ¢ (0 < p < ¢ < 109)7
denoting the angle 27p/q.

Output

The output for every scenario begins with a line containing “Scenario
#i:7”, where ¢ is the number of the scenario starting at 1. Then print
the maximal occurring distance, rounded to two digits after the decimal
point. Terminate the output for the scenario with a blank line.

Example
knights.in knights.out

1 Scenario #1:

4 7.90

01

14

23

45

Problem K. Honeymoon Hike

Input file:
Output file:

honeymoon. in
honeymoon.out

Emma is on a hiking trip with Eric, her freshly-married husband, for
their honeymoon. They are hiking from one cabin to the next every day.
Unfortunately, Eric is not as fit as Emma and is slowly getting tired.
Since Emma does not want to start their newly-formed marriage with a
serious conflict (and needs somebody to keep her warm in the nights),
she decides to plan the next day trips so that they are not so strenuous
for Eric.

In the past days, Emma has discovered a surprising fact about her
husband. He is not so much tired by the length of their daily trip or
the total amount of meters they had to climb. Instead, Eric is tired the
more, the bigger the difference between the highest and the lowest point
of today’s route becomes. Emma assumes this is due to psychological
factors. It just sounds a lot more difficult to climb once from 500 meter
to 1500 meters than to climb from 200 to 400 meters ten times, although
you climbed twice as much in the latter case.

Given an altitude map of the terrain, you should help Emma in finding
a path that minimizes the difference between its highest and its lowest
elevation, so that Eric does not feel as tired. The cabin they start at is
located at the top-left corner and their destination is the bottom-right
corner of the map. They can move along any of the four major directions
but not on a diagonal.

Page 5 of 6

Darmstadt local contests 2005 + 2006
SPb NRU ITMO Training 06, September 17, 2013

Input

The first line contains the number of scenarios. Each scenario starts
with a number n (2 < n < 100), the size of the area. The elevations of
the terrain are given as a n X n integer matrix (h; ;) (0 < hy ; < 200)
on n lines, where each line contains n space-separated elevations.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where ¢ is the number of the scenario starting at 1. Then, print a
single line containing the difference between the highest and the lowest
elevation on the optimal path. Terminate the output for the scenario
with a blank line.

Example
honeymoon.in honeymoon.out

1 Scenario #1:

5 3

113638

12255

44033

802214

43031

Problem L. Relocation

Input file: relocation.in
Output file: relocation.out

Emma and Eric are moving to their new house they bought after
returning from their honeymoon. Fortunately, they have a few friends
helping them relocate. To move the furniture, they only have two
compact cars, which complicates everything a bit. Since the furniture
does not fit into the cars, Eric wants to put them on top of the cars.
However, both cars only support a certain weight on their roof, so they
will have to do several trips to transport everything. The schedule for
the move is planed like this:

1. At their old place, they will put furniture on both cars.

2. Then, they will drive to their new place with the two cars and
carry the furniture upstairs.

3. Finally, everybody will return to their old place and the process
continues until everything is moved to the new place.

Note, that the group is always staying together so that they can have
more fun and nobody feels lonely. Since the distance between the houses
is quite large, Eric wants to make as few trips as possible.

Given the weights w; of each individual piece of furniture and the
capacities C1 and Cq of the two cars, how many trips to the new house
does the party have to make to move all the furniture? If a car has
capacity C, the sum of the weights of all the furniture it loads for one
trip can be at most C.

Input

The first line contains the number of scenarios. Each scenario consists
of one line containing three numbers n, C1 and C2. C1 and C2 are the
capacities of the cars (1 < C; < 100) and n is the number of pieces
of furniture (1 < n < 10). The following line will contain n integers
w1, ..., Wn, the weights of the furniture (1 < w; < 100). It is guaranteed
that each piece of furniture can be loaded by at least one of the two
cars.

Output

The output for every scenario begins with a line containing “Scenario
#i:7, where 7 is the number of the scenario starting at 1. Then print a
single line with the number of trips to the new house they have to make
to move all the furniture. Terminate each scenario with a blank line.

Example
relocation.in relocation.out
2 Scenario #1:
6 12 13 2
3913310 11
7 1 100 Scenario #2:
1 2 33 50 50 67 98 3

Page 6 of 6

