
LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

Problem A. Fight Against Numbers
Idea: Ivan Kazmenko
Development: Ivan Kazmenko

Note that, after reversing, the most significant digit in the binary notation, which is always one, becomes
the last digit. After subtraction, this one is replaced by a zero. Therefore, each power move reduces the
number of ones in the binary notation by exactly 1.

The answer is the number of ones in the binary notation of n.

Problem B. Time of the Magical Number
Idea: Nikolay Dubchuk
Development: Nikolay Dubchuk

The two main approaches are:

• one can perform a brute force check and verify each time for its relevance to 239;

• one can mathematically calculate how many successful combinations there are.

Problem C. Inflation
Idea: Nikolay Dubchuk
Development: Nikolay Dubchuk

One can solve it by the formula n · 5.5 · p/100. Or with a cycle: in the first month, the loss is n · p/1000,
in the second month, the loss is 2 · n · p/1000, . . . , in the tenth month, the loss is 10 · n · p/1000.

Problem D. Nine Out Of Ten
Idea: Anton Maidel
Development: Anton Maidel

Let’s consider the subproblem of maximizing the number of successful experiments. The set of successful
experiments consists of two non-overlapping subsets: the mad scientist correctly identified a successful
experiment and the mad scientist incorrectly identified an experiment as unsuccessful. Since these subsets
do not overlap, we can maximize their sizes independently of each other. According to the problem
statement, the size of the set of correctly identified experimental results is n

10 , and according to the
condition, the size of the set of experiments that the scientist identified as successful is x. To maximize the
number of correctly identified successful experiments, we use the fact that the experiments are independent
and indistinguishable from each other, leading us to the result of min(n

10 , x). The formula for the second
subset is accordingly: min(9n10 , n − x). By summing these two minima, we obtain the formula for our
subproblem: min(n

10 , x) +min(9n10 , n− x). The second subproblem of minimizing the number of successful
experiments is equivalent to the problem of maximizing the number of unsuccessful experiments, which
can be solved similarly to the first subproblem, and the final formula for the minimization subproblem
looks like this: n−min(n

10 , 10− x)−min(9n10 , x).

Problem E. Garden Bed
Idea: Nikolay Dubchuk
Development: Nikolay Dubchuk

For the minimum area, multiply the smallest board size by the sum of all the others. For the maximum
area, solve the knapsack problem (selecting boards so that the dimensions are closer to a square). It can
be solved by brute force.

Problem F. Largest Area
Idea: Mikhail Ivanov
Development: Mikhail Ivanov

Page 1 of 6

LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

The largest ellipse that can fit inside a square is a circle. To obtain the answer for an arbitrary rectangle,
one must apply an affine transformation to convert the square into a rectangle, which will also transform
the circle into an ellipse. Affine transformations preserve area ratios, which implies that the resulting
ellipse will have the largest possible area.

From this reasoning, we can conclude that the ratio of the area of the largest ellipse to the area of the
rectangle containing it is constant. For a square, this ratio is π

4 ; thus, the solution to the problem is to
calculate the area of the rectangle (for example, using the pseudo-scalar product of the vectors of two of
its adjacent sides) and multiply it by π

4 .

Problem G. Out of Bounds Piano
Idea: Mikhail Ivanov
Development: Mikhail Ivanov

Imagine that the keyboard is two-sided infinite, and we enumerate its keys with integers. Note that each
next key can be uniquely determined by its letter and the previous key. Let us construct the route on this
infinite keyboard (starting with any number with proper residue mod 7) and store the reached minimum
and maximum. Then, with jumps of seven, let us try to put these minimum and maximum into the
segment [0; 51]: the answer is “YES” whenever it is possible. To check that, add the minimum number of
sevens (possibly negative) such that the minimum is (still) non-negative, and check that the maximum is
at most 51.

Problem H. Competition Results
Idea: Anastasia Grigorieva
Development: Vladislav Makarov

This problem has many solutions. Let’s analyze one of them. Which place did the runner 1 take? All
runners that they overtook have a higher number (because 1 is the smallest possible number). Therefore,
they took the place n − a1. Let’s remember this fact and imagine that runner 1 did not participate in
the competition (but the numbers of all other runners remain the same). The numbers aj for j ⩾ 2 will
not change: since 1 is the smallest possible number, runner 1 was not counted in any of the quantities
aj regardless of their performance. In the competition without runner 1, the smallest number belongs to
runner 2. Therefore, runner 2 took the place n−a2 in the competition without runner 1. We can continue
applying this argument for all runners in the increasing order of their numbers.

How do we solve the problem now? Let’s create an array of all possible places in the increasing order
(initially, these are the numbers from 1 to n in the increasing order). Suppose that we consider runner
i at the moment. They took the place located at the position n − ai in this array. Let’s remove this
place from the array. In other words, we can look at the above argument in the following way: when we
pretend that runner i never participated in the competition, we allow them to “take away” their place
with them “while leaving”. For example, runner 2 took the place at the position n − a2 in the array
(1, 2, . . . , n− a1 − 2, n− a1 − 1, n− a1 + 1, n− a1 + 2, . . . , n). In the end, we obtain an array that maps
each runner’s number to their place. Let’s take the “converse” array that maps the runners’ numbers to
their places. This array is the answer to the problem.

This solution works in O(n2) time. Indeed, we have to do the following operation n times in total: remove
an element from somewhere in the middle of the array. Removing an element from the middle of an
array requires shifting all subsequent elements one position to the left. Hence, each iteration takes O(n)
time. There are also faster solutions, and there are many of them. If you are interested in this topic, we
recommend searching for the keyword “inversion table” (in the context of permutations).

Problem I. Who Am I?
Idea: Nikita Gaevoy
Development: Nikita Gaevoy

Let’s consider an arbitrary player. In a random test, this player will guess their card with a probability

Page 2 of 6

LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

of exactly 1/n, where n is the number of players at the table. We need at least one player to guess the
answer with a probability of 1, therefore, in the correct strategy, the answer will be guessed by exactly
one player. Thus, the players’ strategies must have some parameter that is different for all players and
takes exactly n possible values, from which the player can recover their card. The sum of the numbers on
all the cards modulo n will serve as such a parameter.

Thus, in the first run, we will choose the player whose number matches the sum of the numbers on all the
cards, and in the second run, using this number as the player’s number, we will recover the answer.

Problem J. Nature Reserve
Idea: Anastasia Grigorieva
Development: Vladislav Makarov

The problem can be solved in the following way. Firstly, find two points within our set that are as distant
as possible. Secondly, draw a line through each of them that is perpendicular to the segment between
them. It is clear that the distance between such lines is exactly equal to the distance between the chosen
points.

So why, with such a choice of the strip, will all points fall either inside it or on its boundary? Let’s
understand this. Let our pair of points be A and B (if there are many pairs that achieve the maximum
distance, we may choose any of them). Let ℓA be the line that passes through A and is perpendicular to
AB. Similarly, let ℓB be the line that passes through A and is perpendicular to AB. Suppose that one
of our points (let’s call it C) does not lie between ℓA and ℓB. Without loss of generality, C and B lie
strictly on the opposite sides of ℓA. Thus, the segment CB intersects the line ℓA. Let’s call the intersection
point P . Then, |BC| > |BP | ⩾ |BA|. The first inequality holds because P lies strictly on the segment
BC. The second inequality holds because the segment BA is perpendicular to ℓA and thus represents the
shortest distance from B to a point on ℓA. Therefore, points B and C are farther apart than A and B.
Contradiction.

On the other hand, it is impossible to obtain a better answer. Indeed, suppose that we have two points
C and D from our set. Moreover, suppose that two parallel lines ℓC and ℓD pass through C and D,
respectively. Then, the distance between ℓC and ℓD does not exceed |CD|, since the segment CD connects
the parallel lines in some way and, therefore, is not longer than the distance between ℓC and ℓD along the
perpendicular. And CD is some segment between the two given points. Therefore, it is not longer than
the segment AB. Here, it does not even matter that all our points must lie between ℓC and ℓD (and, in
general, the set of correct answers to the problem will not change if this requirement is removed).

Problem K. Hex Operations
Idea: Ivan Kazmenko
Development: Ivan Kazmenko

First, let us learn to work with a hex with some convenience. Here is one way to do it.

Introduce homogeneous coordinates (x, y, z) along three axes with angles of 120 degrees between them.
For each cell, we will have x+ y+ z = 0. If we agree that the center of the hex is at cell (0, 0, 0), then the
cells of the hex are (x, y, z) for which |x|, |y|, |z| < n.

Page 3 of 6

LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

yz

x

-30
3

-31
2

-32
1

-33
0

-2-1
3

-20
2

-21
1

-22
0

-23
-1

-1-2
3

-1-1
2

-10
1

-11
0

-12
-1

-13
-2

0-3
3

0-2
2

0-1
1

00
0

01
-1

02
-2

03
-3

1-3
2

1-2
1

1-1
0

10
-1

11
-2

12
-3

2-3
1

2-2
0

2-1
-1

20
-2

21
-3

3-3
0

3-2
-1

3-1
-2

30
-3

yz
x

For example, here is a pseudocode which reads the initial hex:

m := n - 1
create table a[m + n][m + n]
for x := -m, ..., m:

for y := -m, ..., m:
z := -x - y
if -m <= z and z <= m:

read a[m + x][m + y]

Now, the hex from the example is stored in the array a as follows:

0 0 4 1 8
0 3 5 1 7
2 1 6 1 8
1 7 1 9 0
8 9 9 0 0

Zeroes correspond to unused cells of the array.

Every other operation with a hex looks similarly in code. The code for output is almost the same. Here
is another example for the “R” operation, a 60-degree clockwise rotation:

create table b[m + n][m + n]
for x := -m, ..., m:

for y := -m, ..., m:
z := -x - y
if -m <= z and z <= m:

b[m + x][m + y] := a[m - y][m - z]

Operations “L” and “T” are implemented similarly.

There is the second part of the problem: how to perform 250 000 operations with a hex of size 500.

Note that the available operations form a group of transformations of a hex which has only 12 elements.
In other words, the hex has just 12 different states: 6 possible rotations and another 6 reflected cases.

Let us learn to calculate the operation in this group without transforming the hex itself. For example,
we can store the state of the hex as two integers: the number of rotations rotate ∈ {0, 1, 2, 3, 4, 5} and
the reflection flip ∈ {−1,+1}. Then the reflection operation changes the value of flip, and a rotation
operation adds to rotate (or subtracts) the value of flip (modulo 6).

In the end, first, apply all rotations (there will be from 0 to 5), and then perform or not perform a
reflection.

Page 4 of 6

LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

Problem L. Collatz Hypothesis and Random Increases
Idea: Mikhail Ivanov
Developer: Mikhail Ivanov

There were plenty of ways to solve the problem. One series of solutions is as follows: fix two parameters
w ∈ Z>0 and k ∈ [0; 1]. Let us try to apply the Collatz function to the current number w times. If 1 is
reached within these steps, then we apply the Collatz function. If at most kw times we applied the Collatz
function to an odd number, then we also apply the Collatz function (intuitively, the less we have to apply
the Collatz function to an odd number, the less we multiply it by three and the more we divide it by
two, thus on average we better decrease the number shown on the screen). Otherwise, apply the random
function.

One reason why this solution might work poorly is that it may sometimes increase an even number. With
a probability of 50% it turns odd, and the opportunity to halve it is missed. It’s better to first halve
the number, and only then to apply the random function. To address this issue, let us combine that
(w, k)-strategy with (1, k), . . . , (w − 1, k)-strategies: that is, if at least for one positive integer v ≤ w in
the nearest v iterations of the Collatz function we increase the number at most kw times, then we had
better apply Collatz. This updated strategy is already accepted for w = 11, k = 0.37. To get a pair of
well-performing parameters, one might brute-force through random pairs of parameters and check the
performance of each one on many random inputs.

Another strategy is to try to construct an (almost) optimal solution. Let us choose a bound N and create
a float array dp[1..N] denoting the mathematical expectation of the score of the optimal strategy starting
with each number. Initialize it with the score reached by only applying the Collatz function. Then let us
traverse the array s times, each time updating each value dp[i] with the minimum of the score achieved by
applying Collatz (and continuing optimally), or with the average over a[3i+ 1..6i], depending on what’s
smaller. To calculate the average over a[3i + 1..6i], we can make use of the running sum (a.k.a. window
sum) algorithm. This algorithm is accepted for N = 107, s = 19 (and certainly for many other pairs).

Problem M. Sums of Two
Idea: Ivan Kazmenko
Development: Ivan Kazmenko

This is a problem about constant optimizations.

To start, implement what the problem is asking. Maintain an array of boolean values v where vk denotes
whether an element k belongs to the set V . To count the number of pairs with sum k, consider all pairs
of indices (i, j) where i ≤ j and i+ j = k. We will have to perform on the order of 1011 operations.

To make the operations more convenient, maintain another array w where the elements will be stored in
reverse order: wk = vm−k where m = 999 982. Now the check vi&vk−i can be replaced by vi&wm−k+i. The
profitable part is that we can now store vi and wi in bits of 64-bit integers, and perform the & operation
with 64 bits simultaneously, which is 64 times faster.

To speed the solution up a few times more, we can vectorize operations, but now with 64-bit numbers,
with SSE or AVX. A careful implementation, or an even more careful use of bitset from the library, was
enough to make the optimizing compiler do it by itself (in C++, for example, one should turn on the
respective pragma instructions for that).

If this is not enough, code can be optimized further. For example, perform loop unrolling of the innermost
loop by hand. Or store 64 bitset instances for shifts of 0, 1, . . . , 63 bits. The fastest jury solutions in
several languages work 4–5 times faster than required in the problem.

Problem N. Wanted: Second Sock
Idea: Ivan Bochkov
Development: Ivan Bochkov

Let f(p,m) be the answer to the problem. The problem can be viewed as follows: a random permutation

Page 5 of 6

LXI St. Petersburg State University Championship
St. Petersburg, Russia, Sunday, October 26, 2025

of the socks is fixed, and the expectation of the position of the first sock that appears twice is taken. Note
that

1. f(p,m) = f(p,m−1)·(2p+m+1)
(2p+m) . Indeed, let’s select one unpaired sock and examine the order of the

remaining socks. With the rest fixed, we can insert 1 sock in each gap with one probability. That is,
moving to the expectation, the “length” of the gaps is multiplied by (p+2m+1)

(p+2m) .

2. f(p, 0) = f(p− 1, 1) if p ≥ 2. Indeed, let us denote the last sock in the permutation as 1. Then we
can just remove this sock and add the remaining sock of type 1 to the “unpaireds”.

From the two statements, it follows that f(p,m) = (2p+m+1)4p

(2p+1)Cp
2p

, which, after calculating the factorials and

their inverses, can be calculated in O(1).

Page 6 of 6

