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Problem A. Adrenaline Rush
Problem author and developer: Dmitry Gozman

Consider two cars numbered x and y, x ≤ y. Suppose these cars finish at positions i and j, respectively,
such that ci = x and cj = y. There are two possible scenarios:

• i ≥ j - The cars finished in the reverse order. For this to occur, car y must overtake car x exactly
once, but car x must not overtake car y.

• i ≤ j - The cars finished in the same order. In this case, either car y overtook car x and then car x
overtook car y back, or there were no overtakes between them. To maximize the answer, we assume
that two overtakes occurred in this case.

Based on the above, the total number of overtakes does not exceed n(n − 1) − inv(c). Here inv(c) is the
number of pairs (i, j) such that i ≤ j and ci ≥ cj , called the number of inversions in the permutation c.

To achieve the maximum possible number of overtakes, we can use the following strategy. Consider the
cars in reverse order of their finishing positions, i.e., cn, . . . , c1. Let each car overtake all the cars in front
of it one by one, and then allow all the cars that finished earlier to overtake it.

Applying this algorithm to the first example:

• The cars start in the order of 1, 2, 3.

• Car 1 finishes last. Since it starts first, there is no other car it can overtake. However, both car 2
and car 3 should overtake it. The relative order at this point is 2, 3, 1, with a total of 2 overtakes so
far.

• Car 3 finishes second. It can overtake car 2 in front of it, after which car 2 overtakes it back. This
results in the same relative order 2, 3, 1, with a total of 4 overtakes.

• Car 2 finishes first, but there is no car it can overtake at this point.

• In total, this gives a sequence of 4 overtakes.

Problem B. BitBitJump
Problem author and developer: Georgiy Korneev

There are a lot of different solutions. One of them contains two blocks of 17 instructions each. The first
block starts from word 0, and the second one from word 64.

The i-th instruction of the block, counting from zero, depends on the (i− 1)-th bit of the x, where bit −1
is considered to be zero.

Let IOword = 212−1 and IObit = IOword ·16 — address of the IO word and its first bit. For each instruction
let @word and @bit to be addresses of its first word and bit.

For i = 0..15 if the (i − 1)-th bit of the input is zero, then in the i-th instruction of the first is bbj
IObit+i,@bit+32+6,@word+3, and instruction of the second block is “return false“: bbj 0, IObit, IOword.
If the (i− 1)-th bit of the input is one, then instructions in the blocks are swapped.

If the 15-th bit of x is zero, then the last instruction of the first block is “return true“: bbj 4, IObit, IOword,
and in the second block is “return false“. Otherwise, these instructions also should be swapped.

Problem C. Cactus without Bridges
Problem author and developer: Levon Muradyan
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Let’s define the following condition from the problem "the length of each odd cycle is greater than
or equal to the number of odd cycles" as * condition.

Let’s also define two types of cactuses:

• Type 1 — The number of cycles of odd length is even;
• Type 2 — The number of cycles of odd length is odd.

Let’s prove that when the cactus is of Type 2, then it’s impossible to give labeling. Let’s suppose, to the
contrary, we can give the labeling satisfying the conditions of the problem. Since the degree of each vertex
of the graph is even and for each vertex, the labels should make an interval of integers, we can state that
for each vertex v, the number of odd labels of the edges incident to the vertex v is equal to the number
of even labels of the edges incident to the vertex v. Let’s calculate the number of edges with odd labels
by Handshaking lemma and we will get E(G)

2 , which states that the number of edges in the graph should
be even.

We will prove that for cactuses of Type 1, it’s always possible to give labeling when * condition is available.
Let’s prove the following two facts:

• If the cactus is of Type 1 and * condition is available, then we can label the edges of the graph
satisfying the problem conditions;

• If the cactus is of Type 2 and * condition is available, then we can label the edges of the graph
satisfying problem conditions except for one arbitrary vertex u so that there will exist an integer x
such that the labels of edges incident to the vertex u, x and x+ 2 will form an interval of integers.
More formally for the vertex u we have two missed integers for a full interval, and the difference
between them is equal to 2.

First, let’s note that * condition is satisfied for any cactus subgraph of the given cactus. We can prove
one of these two facts, the other one will be proved in the same way. Let’s prove the first one.

We will give proof using an induction method on the number of vertices of the graph. Let’s take an
arbitrary cycle from the given cactus, and let’s consider that the cycle has the length k and the vertices
of the cycle are u1, u2, . . ., uk. If we remove from the graph the edges of this cycle, we will have k
components: G1, G2, . . ., Gk, where Gi will contain the vertex ui for each 1 ≤ i ≤ k.
Now let’s define the following F function for the vertices of the cycle in the following way:

• |F (vi)| = 1, if Gi is of Type 1 for 1 ≤ i ≤ k;
• |F (vi)| = 2, if Gi is of Type 2 for 1 ≤ i ≤ k;

where |x| means an absolute value of x.

Let’s define by c1 — the number of i such that Gi is of Type 1, while by c2 — the number of i such that
Gi is of Type 2 for 1 ≤ i ≤ k.
If we label the edges of the cycle such that the difference between the labels of two consecutive edges will
be equal to F (w), where w is the common vertex of those two edges, then everything will be fine (we can
shift the label of subgraphs in such a way that all conditions will be satisfied). Let’s note that it’s possible
to label the edges of this cycle if the following condition

∑k
i=1 F (vi) = 0 is true.

Now let’s consider two cases:

Case 1: k is even. Here both c1 and c2 should be even, so we can take the values of F in the following
way:

• The number of vi such that F (vi) = 1 is equal to c1
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = −1 is equal to c1
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = 2 is equal to c2
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = −2 is equal to c2
2 for 1 ≤ i ≤ k.
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Case 2: k is odd. Here c2 should be odd, while c1 should be even. Since we have * condition, then you
can note that c1 ≥ 2, so we can take the values of F in the following way:

• The number of vi such that F (vi) = 1 is equal to c1−2
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = −1 is equal to c1+2
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = 2 is equal to c2+1
2 for 1 ≤ i ≤ k;

• The number of vi such that F (vi) = −2 is equal to c2−1
2 for 1 ≤ i ≤ k.

Problem D. DAG Serialization
Problem author: Vitaly Aksenov; problem developer: Dmitry Petrov

Consider the lifetime of our register. Notice that it has no more than three phases:

1. The initial “false” phase
2. The intermediate “true” phase
3. The final “false” phase

Additionally, there are no more than 4 types of operations:

1. “set true”
2. “unset true”
3. “set false”
4. “unset false”

The operation of the 1st type “set true” transitions between the 1st and the 2nd register phases. The
operation of the 2nd type “unset true” transitions between the 2nd and the 3rd register phases.

All the operations of the 3rd type are between the 1st and the 2nd. We can add logical arcs from the
operations of type 1 to all the operations of type 3, and from all the operations of type 3 to the operation
of type 2. Also, add a logical arc from the 1st to the 2nd operation.

Operations of the 4th type may occur in either the 1st or 3rd phase. Their exact placement can only be
determined by the DAG.

We can finally build a graph G containing n vertices (all the operations), m given DAG arcs, and the
logical arcs mentioned. Then, simply find a topological sort in G, starting from the operation of type 1,
ensuring there are no loops, and return it as the answer.

Problem E. Expression Correction
Problem author and developer: Roman Elizarov

This is a straightforward problem. The limits allow for exhaustively checking all possible ways to move a
digit, then parse the equality and check if it is a correct one. However, there are many corner cases that
should be taken care of, including the following ones:

• Make sure that numbers with leading zeros are not allowed (WA 3).

• Make sure that 11-digit numbers are not allowed (WA 5).

• Make sure that you only move digits, not other characters (WA 6).
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• Make sure that you allow zero “0” as a valid number (WA 7).

• Make sure that “empty” number is not allowed (WA 23).

• Make sure that “00” is not considered a valid number (WA 24).

• Make sure that expressions don’t start with ‘+’ or ‘-’ (WA 50).

Problem F. Fix Flooded Floor
Problem author: Vitaly Aksenov; problem developer: Zakhar Iakovlev

We’ll call a cell empty if it’s damaged and not yet covered with a 1× 2 piece, and full otherwise.

Let’s process the columns greedily from left to right and try to fill the parquet with 1 × 2 pieces. We’ll
always maintain the invariant that all cells in the processed columns are full.

For the current column:

• If both cells are full, we don’t need to do anything.

• If one cell is empty and the other one is full, the only thing we can do is put a new 1 × 2 piece
horizontally, with its left half in the empty cell. Here, we need to make sure that the cell on the
right of the empty cell is empty as well. If that’s true, we put a new piece, so both empty cells are
now full. Otherwise, the answer is “None”.

• If both cells are empty, we have two options here. First, we could always put a vertical piece in this
column. Second, only if both cells in the next column are empty, we could put two horizontal pieces
covering these two columns. However, if we do the latter, we might as well use two vertical pieces
for these two columns instead. Thus, if this happens, the answer can never be “Unique”. We can just
place a vertical piece and proceed, and if we manage to finish the tiling, the answer is “Multiple”,
otherwise it’s “None”.

To conclude, if the above process fails at any point, the answer is “None”. If we ever encounter a situation
where we could put either two vertical pieces or two horizontal pieces, the answer is “Multiple”. Otherwise,
the answer is “Unique”.

Time complexity of this solution is O(n).

Problem G. Geometric Balance
Problem author: Georgiy Korneev; problem developer: Egor Kulikov

• Representing Directions and Movements: We consider movement along four principal
directions (North–South, East–West, Northeast–Southwest, and Northwest–Southeast). Each step
can be viewed as a combination of these four directions. We return to a point if, when summed over
all movements, there is no net displacement in any of these four directions.

• Merging Consecutive Segments: We start with a sequence of line segments. If two consecutive
segments share a common endpoint and point in the same direction, we merge them into a single,
longer segment. We repeat this process until no further merging is possible, resulting in a simpler
representation of the picture.

• Checking for Identical Pictures Under Rotation: We want to see if the given picture can be
matched to itself after certain rotations. We will test three possible rotation angles:

– 45 degrees
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– 90 degrees

– 180 degrees

If none of these rotations produce the original configuration, we conclude that only a full 360-degree
rotation brings the picture back to itself.

• Comparing the Sets of Segments After Rotation: For each rotation we test:

1. Rotate all segments by the chosen angle.

2. Translate the rotated figure so that the lexicographically smallest endpoint matches the smallest
endpoint of the original configuration.

3. Compare the resulting set of segments to the original. If they match, we have found a rotation
that maps the picture onto itself.

If no tested rotation (45°, 90°, 180°) results in a match, the answer is effectively 360°.

Problem H. Hunting Hoglins in Hogwarts
Problem author and developer: Tikhon Evteev

The main idea is to not do the binary search. If you try, you will probably end up with about 400 caught
hoglins, which is not enough.

Instead we will maintain the set of disjoint segments s1, . . . , sk of approximately equal length. i.e.
||si| − |sj || ≤ 1. After each iteration of the algorithm, it will hold that the hoglin is in one of those
segments, and this segment is also the segment that the hoglin considers accessible. We will also keep
track of the probabilities that the hoglin is in each of these segment, and denote them as pi. We will
reorder the segments so that p1 ≥ p2 ≥ · · · ≥ pk.
From this point on we will not keep track of the fact that the segments are of approximately equal length,
and write as if they were of exactly equal length. We will also not mention, that if at any point of the
interaction we catch the hoglin, we should immediately stop and restart the process.

Initially the hoglin is in a segment s1 = [1, n] with the probability p1 = 1.

For the iteration of the algorithm we will go through the segments in order from 1 to k and block the
midpoint of the corresponding segment. If the interactor returns 1 after we block the midpoint of the j-th
segment, than the hoglin was in one of the segments s1, . . . sj and now is in one of the 2 · j new segments,
each of which is approximately two times smaller than the segments in the previous iteration. If we don’t
get a 1 after we block the last midpoint, we will just wait for it by sending 0, and let j = k.

Let’s for now denote these segments as s11, s
2
1, s

1
2, s

2
2, . . . , s

1
j , s

2
j , and compute the probabilities

p11, p
2
1, p

1
2, p

2
2, . . . , p

1
j , p

2
j with which the hoglin is in each of these segments.

The conditional probability that we will get a 1 after blocking the j-th midpoint, if the hoglin initially
was in the i-th segment is P (Rj |Wi) =

1
2j−i+1 , thus the probability that it is now in either of the segments

s1i or s2i by Bayes’ theorem is p1i + p2i = P (Wi) =
pi·P (Ri|Wi)

P (Ri)
= pi·P (Ri|Wi)

j∑
l=1

pl·P (Rl|Wl)

.

So we can recompute the probabilities pi for the next step and continue the algorithm.

Now to prove the asymptotics we can prove by induction that the sequence p1, . . . pk looks like
p, . . . p, p2 , . . .

p
2 ,

p
4 , . . .

p
4 , . . .. More over, each sequence of the form p

2l
, . . . p

2l
is at most 4 elements long.

To show that we will use the fact that p1i = p2i ∝ pi · P (Ri|Wi) = pi
2j−i . Not strictly: the sequence

of probabilities is multiplied by the sequence 2i, and then each one is duplicated and the sequense is
normalized. Thus the sequence on the equal probabilities is no longer than 4, and the probabilities are
increasing exponentially.
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Knowing that, we do not need to maintain the probabilities pi to sort the segments in the right order,
because we can just reverse the order of segments after each iteration and it will maintain the right order.

Also knowing the exponentially decreasing nature of pi we can see that the expected value of the number
of queries for each iteration is at most 1 · p+ 2 · p+ 3 · p+ 4 · p+ 5 · p2 + 6 · p2 + . . ., where p = 1

8 , which is
5
2 + 4 = 61

2 . Since there are at most log2 n iteration, the solution works in at most 61
2 · log2 n queries per

hoglin on average.

The problem demands no more then about 4.2 · log2 n queries per hoglin, but one can see how our analysis
was only a rough upper bound on the number of queries. In reality, the solution works in about 3.9 · log2 n
queries per hoglin, which leaves more then enough room for variance.

Problem I. Incompetent Delivery Guy
Problem author: Tikhon Evteev; problem developer: Mikhail Ivanov

Let us call a vertex a k-vertex if an orc of incompetence k, starting from this vertex, will definitely reach
Orthanc, but an orc of incompetence k + 1 is not guaranteed to do that. (Or −1-vertex if an orc with
any level of incompetence will not be able to reach Orthanc; or ∞-vertex if an orc with any finite level
of incompetence will eventually reach Orthanc.) This unique number k can be called the type of this
vertex, and the problem essentially consists of finding the type of the entrance vertex. We will present an
algorithm of finding the types of all vertices.

It can be derived from the statement that −1-vertices are exactly the vertices from which there does not
exist an oriented path to Orthanc. In particular, an orc succeeds with their order if and only if they never
visit −1-vertices. Can we then characterize the 0-vertices? If a vertex (which is not a −1-vertex) has an
arc from it to a −1-vertex, it is definitely a 0-vertex, but it is not a necessary condition. The necessary
and sufficient condition is that on each shortest path from a vertex (which is not a −1-vertex) to Orthanc
there is at least one vertex from which there is an arc to a −1-vertex.
Formally, let us define an immediate k-vertex as a k-vertex from which there is an arc to a k − 1-vertex.
Then, we can find all immediate k-vertices as the vertices from which there is an arc to at least one
k − 1-vertex, but which themselves are not `-vertices for ` ≤ k − 1. And k-vertices can be determined
as the vertices from which any shortest path to Orthanc lies through at least one immediate k-vertex.
Indeed, if a vertex is a k-vertex, then, no matter which shortest path Saruman chooses for an orc of
incompetence k+1 in this vertex, at some moment they can hang around to a k− 1 vertex, which means
that they necessarily visit an immediate k-vertex. However, if an orc of incompetence at most k appears
in this vertex, after the first hanging around they will appear in a vertex of type at least k − 1. The
converse (that if our method reported a vertex as a k-vertex then it is actually a k-vertex) can be proven
similarly. Note that everything aforementioned does not apply to Orthanc, which is neither a k-vertex nor
an immediate k-vertex for any finite k, it is always a ∞-vertex.

Hence, the solution is as follows. Firstly, we find
−−→
dist(u,O) for all vertices u using Dijkstra’s algorithm

(O(n+m log n) is fast enough). In particular, we determine all −1-vertices. Then, for each k = 0, 1, 2, . . .
we do the kth stage of the algorithm. During this stage, we firstly find all immediate k-vertices simply
by iterating over all ingoing edges in k − 1-vertices. Then we can find all k-vertices using an algorithm
similar to retroanalysis. This part works in O(m) time. The overall complexity is O(n+m log n).

Problem J. Judicious Watching
Problem author: Tikhon Evteev; problem developer: Pavel Kunyavskiy

Let’s consider we have chosen which homework tasks should be done before time ti, and which after.
What is the optimal strategy of task scheduling in this case? Ideally, we should have as much time as we
can to watch the series and have it as a one segment of time. To do this, we can do all tasks, which should
be finished before at the first moment we can do them, and all tasks need to be done later at the last
moment we can. Then we would have free between finishing tasks before, and either this last moment or
the moment of the call.
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To do this, we need to compute the last moment each task can be started, so all later tasks still can be
finished in time. If we know these values, to answer the query, we can find all tasks which can be started
after the moment of the call, and postpone them to that time, while doing all others in the beginning.
This can be done in O(log n) time per query with O(n) precomputation with binary search and prefix
sums to find the total length of tasks to be done in advance.

To find this last moment, we need a greedy approach, going from right to left through our list of tasks.
The last task can be started to finish it right at its deadline. Each previous task must be started to finish
either at its deadline or at the last time the next task needs to start, whatever is smaller. This can be
also computed in O(n) time after sorting by deadlines.

So overall complexity will be O(n log n) for preprocessing, and O(log n) for each query.

Problem K. Knowns and Unknowns
Problem author: Tikhon Evteev; problem developer: Niyaz Nigmatullin

Get some professor’s list, it consists of permutation elements and wildcards. Define a set of blocks
consisting of:

1. a known element of the list;

2. a non-extendable set of consecutive d unknown elements.

For each second type of blocks there is a set of elements such that any of its subset of size d can be there,
call the elements of this set as candidates for this block. This set consists of some elements from original
permutation that are between the element on the left, and the element on the right of this block. For each
first type of blocks the only candidate is the one that is known at that position. Note that each element
is a candidate to at most one of the blocks.

Let’s build the blocks for both professors.

Then we can build a flow network similar to bipartite matching network, the left part is for the blocks of
the first professor, and the right — of the second one. From the source to each block of the first professor
we have edges with capacity “the size of the block”. The same is for the blocks of the second professor
and sink. For each integer from 1 to n, if it is a candidate to a block of first professor, and to a block of
second professor, then add an edge with capacity 1 from the first block to the second.

If the maximum flow in the network is less than k, then the data is inconsistent.

Otherwise, for each edge we need to check “is there a maximum flow with this edge in it?”, and “is there
a maximum flow without this edge in it?”. Find a maximum flow, if an edge is in the maximum flow,
then check if there is a cycle in a residual network with the reverse of the edge. If an edge is not in the
maximum flow, then check if there is a cycle in a residual network with the edge. This is done by finding
a path between the end of the edge and its beginning in the residual network, the path wouldn’t contain
the reverse edge, since it is already saturated. The solution works in O(n2).

Problem L. Legacy Screensaver
Problem author: Georgiy Korneev; problem developer: Gennady Korotkevich

The rectangles overlap if and only if their individual projections on the x-axis and the y-axis both overlap.
Thus, we can solve the problem separately for the axes, and then merge the results in some way.

Consider the x-axis, and imagine that instead of two rectangles, we just have two segments of lengths w1

and w2 moving inside the [0;W ] range. Each segment is moving at a speed of −1 or 1 and reflecting off
the ends of the range.

It can be seen that the first segment returns to the same state (position and speed) after exactly 2(W−w1)
time units. Similarly, the period of movement of the second segment is 2(W − w2).
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If we look at the rectangles as a pair, the period of their common movement is
tx = lcm(2(W − w1), 2(W − w2)), where lcm(p, q) stands for the least common multiple of p and
q. That is, at any time τ , the segments overlap if and only if they also overlap at times τ + tx, τ +2tx, . . ..

We can write down a bit string a of size tx, where aτ is 1 if the segments overlap at time τ , and 0 otherwise.
Similarly, we can write down a bit string b of size ty, containing the same information for the projections
of the rectangles on the y-axis.

Now, for any time τ , we can see that the rectangles overlap if and only if aτ mod tx = bτ mod ty = 1.

Consider two bits ai and bj (0 ≤ i < tx; 0 ≤ j < ty). Does there exist time τ such that ai will be matched
against bj — that is, such that τ mod tx = i and τ mod ty = j? It is well-known that a solution τ to this
system of modular equations exists if and only if i ≡ j (mod g), where g = gcd(tx, ty) is the greatest
common divisor of tx and ty.

Finally, it can be shown that all pairs (ai, bj) which satisfy i ≡ j (mod g) will be matched against each
other with equal frequencies. For each r = 0, 1, . . . , g − 1, we can find how many indices i exist such that
ai = 1 and i mod g = r; let this number be cr. Similarly, we can find how many indices j exist such that

bj = 1 and j mod g = r; let this number be dr. Now, the numerator of the answer fraction is
g−1∑
r=0

cr · dr,

and the denominator is lcm(tx, ty). Don’t forget to reduce the fraction.

Time complexity of this solution is O((W +H)2).

Problem M. Managing Cluster
Problem author: Tikhon Evteev; problem developer: Ivan Safonov

Despite this problem is formulated as a maximization problem, this is a constructive problem.

Let us find a maximum matching in this tree. It can be done with dp or a greedy algorithm in linear time.
Let us define a set of edges in this matching as M = {(si, fi)}ki=1.

Obviously, the answer does not exceed |M |. Let us construct swaps, such that the answer is exactly |M |
and equal replicas are placed in edges from M .

Let us construct a graph on n services, where we will connect services asi , afi with an edge. Each service
will have a degree of at most 2, so this graph is a union of paths and cycles.

Let us consider some cycle. Suppose it consists of c edges (p1, p2), (p3, p4), . . . , (p2c−1, p2c),
where pi are machines and ap2i = ap2i+1 . Let us make c − 1 swaps between machines:
p1 ↔ p2c−1, p2 ↔ p2c−2, . . . , pc−1 ↔ pc+1. As a result, all edges in the cycle will have replicas of equal
services.

To solve paths, let us do the same operation as with cycles. We can do that because we can just consider
that the start and the end of the path are connected.

With the constructed swaps, we will have the optimal answer. Time complexity O(n).
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