
ICPC 2018–2019
NEERC – Northern Eurasia Finals

Problems Review

December 2, 2018

Problems summary

I Recap: 299 teams, 13 problems, 5 hours

Problems summary

I Recap: 299 teams, 13 problems, 5 hours

I Full text analysis and problem statements are published at http://neerc.ifmo.ru/

Problems summary

I Recap: 299 teams, 13 problems, 5 hours

I Full text analysis and problem statements are published at http://neerc.ifmo.ru/

I These slides give only brief idea of general solution direction

Problems summary

I Recap: 299 teams, 13 problems, 5 hours

I Full text analysis and problem statements are published at http://neerc.ifmo.ru/

I These slides give only brief idea of general solution direction
I Summary table on the next slide lists problem name and stats

I acc — number of teams that had solved the problem (gray bar denotes a fraction of
the teams that solved the problem)

I runs — number of total attempts
I succ — overall successful attempts rate (percent of accepted submissions to total,

also shown as a bar)

Problems summary

problem name acc/runs succ

Alice the Fan 81 /466 17%

Bimatching 0 /53 0%

Cactus Search 26 /121 21%

Distance Sum 0 /19 0%

Easy Chess 249 /565 44%

Fractions 148 /677 21%

Guest Student 225 /589 38%

Harder Satisfiability 1 /11 9%

Interval-Free Permutations 2 /5 40%

JS Minification 5 /50 10%

King Kog’s Reception 20 /65 30%

Lazyland 247 /490 50%

Minegraphed 66 /278 23%

Problem A. Alice the Fan
Author: Oleg Hristenko Statements and tests: Niyaz Nigmatullin

Total
time

0h 1h 2h 3h 4h 5h

81

385

Java Kotlin C++ Python Total

Accepted 1 0 80 0 81
Rejected 2 0 377 6 385

Total 3 0 457 6 466

solution team att time size lang

Fastest ITMO 4 3 42 2819 C++
Shortest BelarusianSU 5 2 157 1907 C++
Max atts. MISiS 4 10 294 5557 C++

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem A. Alice the Fan

I Denote as C maximum possible value of a and b.

I Compute dynamic programming that answers all possible test cases.

I dr ,i ,j equals to maximum possible number of sets “Team A” can win if r sets were
played, “Team A” scored i points and their opponents scored j points.

I There are O(C 2) states (5 · C · C).

I Each set has O(C) possible outcomes.

I To restore the answer compute fr ,i ,j — the outcome of the r -th set that results in
optimal answer for dr ,i ,j .

Problem B. Bimatching

Author: Pavel Irzhavski Statements and tests: Pavel Irzhavski

Total
time

0h 1h 2h 3h 4h 5h

53

Java Kotlin C++ Python Total

Accepted 0 0 0 0 0
Rejected 0 0 53 0 53

Total 0 0 53 0 53

Problem B. Bimatching

I First we observe that bimatching as not easier than maximum matching in general
graphs.

I Indeed, consider some graph. You can split each of its edges in the middle and
add extra node there.

I Put all nodes of original graph in a right part and middle points in a left part.

I Now, solving bimatching problem solves maximum matching, thus it is not easier.

I As an experienced participant you should stop to solve the problem with maximum
flow or minimum cost maximum flow and think whether you can convert this two
problems in the other direction and solve bimatching with maximum matching.

Problem B. Bimatching

I First we observe that bimatching as not easier than maximum matching in general
graphs.

I Indeed, consider some graph. You can split each of its edges in the middle and
add extra node there.

I Put all nodes of original graph in a right part and middle points in a left part.

I Now, solving bimatching problem solves maximum matching, thus it is not easier.

I As an experienced participant you should stop to solve the problem with maximum
flow or minimum cost maximum flow and think whether you can convert this two
problems in the other direction and solve bimatching with maximum matching.

Problem B. Bimatching

I First we observe that bimatching as not easier than maximum matching in general
graphs.

I Indeed, consider some graph. You can split each of its edges in the middle and
add extra node there.

I Put all nodes of original graph in a right part and middle points in a left part.

I Now, solving bimatching problem solves maximum matching, thus it is not easier.

I As an experienced participant you should stop to solve the problem with maximum
flow or minimum cost maximum flow and think whether you can convert this two
problems in the other direction and solve bimatching with maximum matching.

Problem B. Bimatching

I First we observe that bimatching as not easier than maximum matching in general
graphs.

I Indeed, consider some graph. You can split each of its edges in the middle and
add extra node there.

I Put all nodes of original graph in a right part and middle points in a left part.

I Now, solving bimatching problem solves maximum matching, thus it is not easier.

I As an experienced participant you should stop to solve the problem with maximum
flow or minimum cost maximum flow and think whether you can convert this two
problems in the other direction and solve bimatching with maximum matching.

Problem B. Bimatching

I First we observe that bimatching as not easier than maximum matching in general
graphs.

I Indeed, consider some graph. You can split each of its edges in the middle and
add extra node there.

I Put all nodes of original graph in a right part and middle points in a left part.

I Now, solving bimatching problem solves maximum matching, thus it is not easier.

I As an experienced participant you should stop to solve the problem with maximum
flow or minimum cost maximum flow and think whether you can convert this two
problems in the other direction and solve bimatching with maximum matching.

Problem B. Bimatching

I For each node v in the left part create its clone v ′.

I Connect v ′ to each node in the right part that is connected to v .

I Now, add an edge between v and its clone v ′.

I Find maximum matching in this new graph. Its size is at least n (size of the left
part).

I However, switching v and v ′ to match with some nodes in the right part increases
the answer by 1.

Problem B. Bimatching

I For each node v in the left part create its clone v ′.

I Connect v ′ to each node in the right part that is connected to v .

I Now, add an edge between v and its clone v ′.

I Find maximum matching in this new graph. Its size is at least n (size of the left
part).

I However, switching v and v ′ to match with some nodes in the right part increases
the answer by 1.

Problem B. Bimatching

I For each node v in the left part create its clone v ′.

I Connect v ′ to each node in the right part that is connected to v .

I Now, add an edge between v and its clone v ′.

I Find maximum matching in this new graph. Its size is at least n (size of the left
part).

I However, switching v and v ′ to match with some nodes in the right part increases
the answer by 1.

Problem B. Bimatching

I For each node v in the left part create its clone v ′.

I Connect v ′ to each node in the right part that is connected to v .

I Now, add an edge between v and its clone v ′.

I Find maximum matching in this new graph. Its size is at least n (size of the left
part).

I However, switching v and v ′ to match with some nodes in the right part increases
the answer by 1.

Problem B. Bimatching

I For each node v in the left part create its clone v ′.

I Connect v ′ to each node in the right part that is connected to v .

I Now, add an edge between v and its clone v ′.

I Find maximum matching in this new graph. Its size is at least n (size of the left
part).

I However, switching v and v ′ to match with some nodes in the right part increases
the answer by 1.

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem B. Bimatching

I We can find maximum matching with Edmonds’ blossom shrinking algorithm in
O(VE) time.

I However, assuming the given constraints there is no sense to aim for O(VE) and
one can go with easy to implement O(V 2E) version.

I Another method to approach maximum matching problem is to consider Tutte
matrix M of this graph.

I To find whether there exists a perfect matching in the graph one checks whether
|M| 6= 0.

I To find the size of the maximum matching we apply Gauss elimination to find
rank of Tutte matrix.

I FYI, the best known result to find maximum matching is O(VE
logV).

Problem C. Cactus Search
Author: Borys Minaiev Statements and tests: Borys Minaiev

Total
time

0h 1h 2h 3h 4h 5h

26

95

Java Kotlin C++ Python Total

Accepted 0 0 26 0 26
Rejected 0 0 95 0 95

Total 0 0 121 0 121

solution team att time size lang

Fastest ITMO 2 2 127 2417 C++
Shortest BelarusianSU 5 1 269 1230 C++
Max atts. KBTU 1 8 248 2372 C++

Problem C. Cactus Search

I First consider this problem on a tree.

I Each tree has at least one centroid, such node that its removal splits the tree in
connected components of size no more than n

2 .

I Thus, we can pick this centroid and the jury pics one the components.

I The process will finish in no more than log n + 1 steps.

Problem C. Cactus Search

I First consider this problem on a tree.

I Each tree has at least one centroid, such node that its removal splits the tree in
connected components of size no more than n

2 .

I Thus, we can pick this centroid and the jury pics one the components.

I The process will finish in no more than log n + 1 steps.

Problem C. Cactus Search

I First consider this problem on a tree.

I Each tree has at least one centroid, such node that its removal splits the tree in
connected components of size no more than n

2 .

I Thus, we can pick this centroid and the jury pics one the components.

I The process will finish in no more than log n + 1 steps.

Problem C. Cactus Search

I First consider this problem on a tree.

I Each tree has at least one centroid, such node that its removal splits the tree in
connected components of size no more than n

2 .

I Thus, we can pick this centroid and the jury pics one the components.

I The process will finish in no more than log n + 1 steps.

Problem C. Cactus Search

I Now we consider cactus case.

I Actually, ignore the fact we are given a cactus and solve the problem for any
connected graph.

I Apply Floyd algorithm to compute a matrix of distances ρ(u, v).

I We maintain a set of candidates A. Initially it contains all nodes of given graph G .

I If we ask about node u and node v is given as a reply we eliminate from set A all
nodes w ∈ A such that ρ(v ,w) < ρ(u,w).

Problem C. Cactus Search

I Now we consider cactus case.

I Actually, ignore the fact we are given a cactus and solve the problem for any
connected graph.

I Apply Floyd algorithm to compute a matrix of distances ρ(u, v).

I We maintain a set of candidates A. Initially it contains all nodes of given graph G .

I If we ask about node u and node v is given as a reply we eliminate from set A all
nodes w ∈ A such that ρ(v ,w) < ρ(u,w).

Problem C. Cactus Search

I Now we consider cactus case.

I Actually, ignore the fact we are given a cactus and solve the problem for any
connected graph.

I Apply Floyd algorithm to compute a matrix of distances ρ(u, v).

I We maintain a set of candidates A. Initially it contains all nodes of given graph G .

I If we ask about node u and node v is given as a reply we eliminate from set A all
nodes w ∈ A such that ρ(v ,w) < ρ(u,w).

Problem C. Cactus Search

I Now we consider cactus case.

I Actually, ignore the fact we are given a cactus and solve the problem for any
connected graph.

I Apply Floyd algorithm to compute a matrix of distances ρ(u, v).

I We maintain a set of candidates A. Initially it contains all nodes of given graph G .

I If we ask about node u and node v is given as a reply we eliminate from set A all
nodes w ∈ A such that ρ(v ,w) < ρ(u,w).

Problem C. Cactus Search

I Now we consider cactus case.

I Actually, ignore the fact we are given a cactus and solve the problem for any
connected graph.

I Apply Floyd algorithm to compute a matrix of distances ρ(u, v).

I We maintain a set of candidates A. Initially it contains all nodes of given graph G .

I If we ask about node u and node v is given as a reply we eliminate from set A all
nodes w ∈ A such that ρ(v ,w) < ρ(u,w).

Problem C. Cactus Search

I We aim to eliminate as many nodes from A as possible.

I Consider every node v (not necessaritly in A). For each u neighbor of v compute
the number of nodes w in A that are closer to u.

I Pick v that has minimum maximum number of such w ’s among all u’s.

I How many steps it will take to reduce A down to a single node?

I We claim there always exists such v that the size of A will reduce at least twice.

Problem C. Cactus Search

I We aim to eliminate as many nodes from A as possible.

I Consider every node v (not necessaritly in A). For each u neighbor of v compute
the number of nodes w in A that are closer to u.

I Pick v that has minimum maximum number of such w ’s among all u’s.

I How many steps it will take to reduce A down to a single node?

I We claim there always exists such v that the size of A will reduce at least twice.

Problem C. Cactus Search

I We aim to eliminate as many nodes from A as possible.

I Consider every node v (not necessaritly in A). For each u neighbor of v compute
the number of nodes w in A that are closer to u.

I Pick v that has minimum maximum number of such w ’s among all u’s.

I How many steps it will take to reduce A down to a single node?

I We claim there always exists such v that the size of A will reduce at least twice.

Problem C. Cactus Search

I We aim to eliminate as many nodes from A as possible.

I Consider every node v (not necessaritly in A). For each u neighbor of v compute
the number of nodes w in A that are closer to u.

I Pick v that has minimum maximum number of such w ’s among all u’s.

I How many steps it will take to reduce A down to a single node?

I We claim there always exists such v that the size of A will reduce at least twice.

Problem C. Cactus Search

I We aim to eliminate as many nodes from A as possible.

I Consider every node v (not necessaritly in A). For each u neighbor of v compute
the number of nodes w in A that are closer to u.

I Pick v that has minimum maximum number of such w ’s among all u’s.

I How many steps it will take to reduce A down to a single node?

I We claim there always exists such v that the size of A will reduce at least twice.

Problem C. Cactus Search

I Let P(v) =
∑

u∈A ρ(v , u). If more than a half of nodes w ∈ A are closer to some
u (neighbor of v), then P(u) < P(v).

I If we pick the node that minimizes P(V) it will eliminate at least a half of A.

I The number of steps is log n + 1 and the running time is O(n2) per single query.

I That results in O(n3) per test case.

Problem C. Cactus Search

I Let P(v) =
∑

u∈A ρ(v , u). If more than a half of nodes w ∈ A are closer to some
u (neighbor of v), then P(u) < P(v).

I If we pick the node that minimizes P(V) it will eliminate at least a half of A.

I The number of steps is log n + 1 and the running time is O(n2) per single query.

I That results in O(n3) per test case.

Problem C. Cactus Search

I Let P(v) =
∑

u∈A ρ(v , u). If more than a half of nodes w ∈ A are closer to some
u (neighbor of v), then P(u) < P(v).

I If we pick the node that minimizes P(V) it will eliminate at least a half of A.

I The number of steps is log n + 1 and the running time is O(n2) per single query.

I That results in O(n3) per test case.

Problem C. Cactus Search

I Let P(v) =
∑

u∈A ρ(v , u). If more than a half of nodes w ∈ A are closer to some
u (neighbor of v), then P(u) < P(v).

I If we pick the node that minimizes P(V) it will eliminate at least a half of A.

I The number of steps is log n + 1 and the running time is O(n2) per single query.

I That results in O(n3) per test case.

Problem D. Distance Sum

Author: Gennady Korotkevich Statements and tests: Gennady Korotkevich

Total
time

0h 1h 2h 3h 4h 5h

19

Java Kotlin C++ Python Total

Accepted 0 0 0 0 0
Rejected 2 0 8 9 19

Total 2 0 8 9 19

Problem D. Distance Sum

I Need:
n−1∑
u=1

n∑
v=u+1

d(u, v)

I Generalize! Vertex i → weight wi

I Need:
n−1∑
u=1

n∑
v=u+1

wuwvd(u, v)

Problem D. Distance Sum

I Need:
n−1∑
u=1

n∑
v=u+1

d(u, v)

I Generalize! Vertex i → weight wi

I Need:
n−1∑
u=1

n∑
v=u+1

wuwvd(u, v)

Problem D. Distance Sum

I While there is a vertex of degree 1:
I Pick any such vertex v , let its only neighbor be u
I Add wv · (n − wv) to the answer
I Increase wu by wv

I Remove v

I If there is a single vertex of degree 0, exit

I Otherwise all vertices have degree at least 2

I deg(v) > 2 =⇒ v is special

I m ≤ n + 42 =⇒ there are at most 84 special vertices

Problem D. Distance Sum

I While there is a vertex of degree 1:
I Pick any such vertex v , let its only neighbor be u
I Add wv · (n − wv) to the answer
I Increase wu by wv

I Remove v

I If there is a single vertex of degree 0, exit

I Otherwise all vertices have degree at least 2

I deg(v) > 2 =⇒ v is special

I m ≤ n + 42 =⇒ there are at most 84 special vertices

Problem D. Distance Sum

I While there is a vertex of degree 1:
I Pick any such vertex v , let its only neighbor be u
I Add wv · (n − wv) to the answer
I Increase wu by wv

I Remove v

I If there is a single vertex of degree 0, exit

I Otherwise all vertices have degree at least 2

I deg(v) > 2 =⇒ v is special

I m ≤ n + 42 =⇒ there are at most 84 special vertices

Problem D. Distance Sum

I 84 special vertices connected by paths of non-special vertices

I Find the distance from every special vertex to all other vertices using BFS

I s(v) =
∑
u 6=v

wud(u, v)

I The answer is 1
2

∑
v
s(v)

Problem D. Distance Sum

I 84 special vertices connected by paths of non-special vertices

I Find the distance from every special vertex to all other vertices using BFS

I s(v) =
∑
u 6=v

wud(u, v)

I The answer is 1
2

∑
v
s(v)

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known
I Consider a non-special vertex u lying on a path between special vertices u1 and

u2:
I u1, x1, x2, . . . , xk , u2

I The shortest path from v to u visits either u1 or u2
I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path

from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known

I Consider a non-special vertex u lying on a path between special vertices u1 and
u2:

I u1, x1, x2, . . . , xk , u2
I The shortest path from v to u visits either u1 or u2

I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path
from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known
I Consider a non-special vertex u lying on a path between special vertices u1 and

u2:
I u1, x1, x2, . . . , xk , u2

I The shortest path from v to u visits either u1 or u2
I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path

from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known
I Consider a non-special vertex u lying on a path between special vertices u1 and

u2:
I u1, x1, x2, . . . , xk , u2

I The shortest path from v to u visits either u1 or u2
I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path

from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known
I Consider a non-special vertex u lying on a path between special vertices u1 and

u2:
I u1, x1, x2, . . . , xk , u2

I The shortest path from v to u visits either u1 or u2
I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path

from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem D. Distance Sum

I How to calculate s(v)?

I For special vertices u, d(u, v) is already known
I Consider a non-special vertex u lying on a path between special vertices u1 and

u2:
I u1, x1, x2, . . . , xk , u2

I The shortest path from v to u visits either u1 or u2
I ∃t ∈ [0; k] : the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path

from v to xt+1, xt+2, . . . , xk visits u2

I t can be calculated based on d(v , u1), d(v , u2), and k

I The part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix
sums of wx1 ,wx2 , . . . ,wxk and 1 · wx1 , 2 · wx2 , . . . , k · wxk

Problem E. Easy Chess
Author: Mikhail Dvorkin Statements and tests: Mikhail Dvorkin

Total
time

0h 1h 2h 3h 4h 5h

249

316

Java Kotlin C++ Python Total

Accepted 8 1 219 21 249
Rejected 67 1 198 50 316

Total 75 2 417 71 565

solution team att time size lang

Fastest MIPT 1 1 17 2237 C++
Shortest Ataturk-Alatoo 2 2 167 417 Python
Max atts. IrkutskNRTU 1 54 293 3542 Java

Problem E. Easy Chess

I Visited cells per column, n = 2: [1, 0, 0, 0, 0, 0, 0, 2].

I Add +1 arbitrarily n − 2 times, keeping ≤ 8.

I Process columns left to right. If visited[i] is 0: skip.

I Otherwise: enter at current row, arbitrarily visit some cells.
I Constraints:

I in column a: start in row 1
I in columns a—g: don’t finish in row 8
I in column h: finish in row 8

Problem E. Easy Chess

I Visited cells per column, n = 2: [1, 0, 0, 0, 0, 0, 0, 2].

I Add +1 arbitrarily n − 2 times, keeping ≤ 8.

I Process columns left to right. If visited[i] is 0: skip.

I Otherwise: enter at current row, arbitrarily visit some cells.

I Constraints:
I in column a: start in row 1
I in columns a—g: don’t finish in row 8
I in column h: finish in row 8

Problem E. Easy Chess

I Visited cells per column, n = 2: [1, 0, 0, 0, 0, 0, 0, 2].

I Add +1 arbitrarily n − 2 times, keeping ≤ 8.

I Process columns left to right. If visited[i] is 0: skip.

I Otherwise: enter at current row, arbitrarily visit some cells.
I Constraints:

I in column a: start in row 1
I in columns a—g: don’t finish in row 8
I in column h: finish in row 8

Problem F. Fractions
Author: Dmitry Yakutov Statements and tests: Dmitry Yakutov

Total
time

0h 1h 2h 3h 4h 5h

148

529

Java Kotlin C++ Python Total

Accepted 0 0 143 5 148
Rejected 4 2 512 11 529

Total 4 2 655 16 677

solution team att time size lang

Fastest SPbSU 3 1 14 1224 C++
Shortest CrimeanFU 1 1 123 381 Python
Max atts. RybinskSATU 10 298 2515 C++

Problem F. Fractions

I If n = pk , where k > 0 and p is prime, then print “NO”.

I Otherwise there exist such integers a, b that n = a · b, 1 < a, b < n,
gcd(a, b) = 1, a ≤

√
n. You can do it in O(

√
n).

I Let’s try to represent n−1
n as a sum of two fractions n−1

n = x
a + y

b .

I It is always possible to find such x and y (1 ≤ x < a, 1 ≤ y < b) that
n−1
n = x

a + y
b .

I Just iterate over all possible values x between 1 and a− 1 and check that
y = n−1−x ·b

a is integer. It requires O(
√
n) steps.

I Total time complexity is O(
√
n).

Problem F. Fractions: Proof

I For each x between 1 and a− 1 the value y = n−1−x ·b
a > 0 (since a · b = n).

I Show that y = n−1−x ·b
a is integer for some x between 1 and a− 1.

I Let’s try all x = 0 . . . a− 1 and look on (n − 1− x · b) mod a.

I For x = 0 (n − 1− 0 · b) mod a 6= 0.

I If for all x = 1 . . . a− 1 all values (n − 1− x · b) mod a 6= 0, then there are two
equal remainder.

I Say, (n − 1− x1 · b) mod a = (n − 1− x2 · b) mod a.

I It means (x1 − x2) · b mod a = 0, but it is imposible since |x1 − x2| < a.

Problem G. Guest Student
Author: Mikhail Mirzayanov Statements and tests: Mikhail Mirzayanov

Total
time

0h 1h 2h 3h 4h 5h

225

364

Java Kotlin C++ Python Total

Accepted 4 1 208 12 225
Rejected 25 0 324 15 364

Total 29 1 532 27 589

solution team att time size lang

Fastest IvanovoSPowU 1 14 810 C++
Shortest YerevanSU 2 2 64 443 Python
Max atts. IrkutskSU 3 9 242 1456 C++

Problem G. Guest Student

I Try each day of a week to start education.

I For each fixed starting day of week solve the problem independently.

I Calculate number of whole weeks. Roughly speaking, number of whole weeks is
≈ k/(a1 + a2 + · · ·+ a7). Process the remainder day by day.

I Return the best result over all possible 7 starting days of a week.

Problem H. Harder Satisfiability

Author: Andrey Stankevich Statements and tests: Artem Vasilyev

Total
time

0h 1h 2h 3h 4h 5h

1
10

Java Kotlin C++ Python Total

Accepted 0 0 1 0 1
Rejected 0 0 10 0 10

Total 0 0 11 0 11

solution team att time size lang

The only MSU 3 3 210 2318 C++

Problem H. Harder Satisfiability

Recall a solution for classic 2-SAT problem:

I Convert formula to implication graph with vertices xi , xi for all variables:
x ∨ y ⇒ (x → y), (y → x)

I Important property: if x is reachable from y , than y is reachable from x .

I Find strong connected components (SCC) in this graph.

I If for any vertex x and x in same component, no solution exists.

I Otherwise, assign values to variables using the topological order.

Problem H. Harder Satisfiability

Necessary conditions:

I For all i : xi and xi are not in same SCC.

I For all i < j with ∃ quantifier near xi and ∀ near xj : none of xi , xi is in one SCC
with xj , xj .

I For all i , j with ∀ quantifiers: none of xi , xi , xj , xj are not reachable from each
other.

Problem H. Harder Satisfiability

And they are sufficient!

I For all i : xi and xi not in same SCC.

I For all i < j with ∃ quantifier near xi and ∀ near xj : none of xi , xi is in one SCC
with xj , xj .

I For all i , j with ∀ quantifiers: none of xi , xi , xj , xj are not reachable from each
other.

Assign algorithm:

I Condition 2 allows us to mark SCC as ”any”, if it have a ∀ vertex inside.

I Let’s make all components reachable from ”any” as true, and their negations as
false.

I This doesn’t lead to a contradiction, because if some vertex is reachable from one
forall and some forall is reachable from it, then the third condition fails.

I Other components can be decided the same way as classic 2-SAT

Problem I. Interval-Free Permutations
Author: Andrey Stankevich Statements and tests: Pavel Kunyavsky

Total
time

0h 1h 2h 3h 4h 5h

2

3

Java Kotlin C++ Python Total

Accepted 0 0 2 0 2
Rejected 0 0 3 0 3

Total 0 0 5 0 5

solution team att time size lang

Fastest MIPT 6 2 216 2063 C++
Shortest MSU 3 2 279 1468 C++
Max atts. MSU 3 2 279 1468 C++

Problem I. Interval-Free Permutations

I Use dynamic programming. Count all permutations and subtract bad ones

I Let’s call an interval a block, if it’s not inside any other interval, except for an
entire permutation.

I Two blocks either non-intersecting or cover full permutation

Problem I. Interval-Free Permutations

I Permutation is either split by at least three blocks or covered by two.

I In the first case, splitting is unique. We can choose any permutation in each
block, while permutation of blocks should be good.

I In the second case, there are several ways to split. To make it unique, we need to
force left permutation have no prefixes, which are permutation.

Problem I. Interval-Free Permutations

I Number of permutation, none of prefixes of which is permutation.

In = n!−
n−1∑
k=1

Ik · (n − k)!

I Number of ways to choose k permutations of total length n.

Bn,k =
n∑

t=1
Bn−t,k−1 · t!

I The answer

An = n!− 2 ·
n−1∑
k=1

Ik · (n − k)!−
n−1∑
k=3

Bn,k · Ak

Problem J. JS Minification
Author: Roman Elizarov Statements and tests: Roman Elizarov

Total
time

0h 1h 2h 3h 4h 5h

5
45

Java Kotlin C++ Python Total

Accepted 0 0 5 0 5
Rejected 0 0 44 1 45

Total 0 0 49 1 50

solution team att time size lang

Fastest MIPT 6 2 203 7724 C++
Shortest MSU 3 1 242 4493 C++
Max atts. ITMO 4 5 261 6512 C++

Problem J. JS Minification

I Parse input
I Either longest word/number or a reserved token

I Rename words
I Remember to skip reserved

I Write output
I Greedily insert spaces when needed
I Keep a list of tokens written since the last space

Problem J. JS Minification

I Parse input
I Either longest word/number or a reserved token

I Rename words
I Remember to skip reserved

I Write output
I Greedily insert spaces when needed
I Keep a list of tokens written since the last space

Problem J. JS Minification

I Parse input
I Either longest word/number or a reserved token

I Rename words
I Remember to skip reserved

I Write output
I Greedily insert spaces when needed
I Keep a list of tokens written since the last space

Problem K. King Kog’s Reception
Author: Vitaliy Aksenov Statements and tests: Vitaliy Aksenov

Total
time

0h 1h 2h 3h 4h 5h

20

45

Java Kotlin C++ Python Total

Accepted 0 0 20 0 20
Rejected 0 0 45 0 45

Total 0 0 65 0 65

solution team att time size lang

Fastest MIPT 6 1 79 3191 C++
Shortest SPbHSE 1 2 250 2168 C++
Max atts. UofLatvia 1 5 219 3819 C++

Problem K. King Kog’s Reception

I Let ti = arrival time, di = duration time.

I For query with time T the answer is:

max
i :ti≤T

(ti +
∑

j :ti≤tj≤T
dj)

I (Knight i comes in his time, all next knights wait consecutively.)

I Make the maximized formula independent of T :

max
i :ti≤T

(ti +
∑
j :ti≤tj

dj)−
∑

j :T<tj

dj

I Right part: interval tree with sum

I Left part: adding/removing a knight affect a segment.

I So, interval tree with addition on a segment.

Problem K. King Kog’s Reception

I Let ti = arrival time, di = duration time.

I For query with time T the answer is:

max
i :ti≤T

(ti +
∑

j :ti≤tj≤T
dj)

I (Knight i comes in his time, all next knights wait consecutively.)

I Make the maximized formula independent of T :

max
i :ti≤T

(ti +
∑
j :ti≤tj

dj)−
∑

j :T<tj

dj

I Right part: interval tree with sum

I Left part: adding/removing a knight affect a segment.

I So, interval tree with addition on a segment.

Problem K. King Kog’s Reception

I Let ti = arrival time, di = duration time.

I For query with time T the answer is:

max
i :ti≤T

(ti +
∑

j :ti≤tj≤T
dj)

I (Knight i comes in his time, all next knights wait consecutively.)

I Make the maximized formula independent of T :

max
i :ti≤T

(ti +
∑
j :ti≤tj

dj)−
∑

j :T<tj

dj

I Right part: interval tree with sum

I Left part: adding/removing a knight affect a segment.

I So, interval tree with addition on a segment.

Problem K. King Kog’s Reception

I Let ti = arrival time, di = duration time.

I For query with time T the answer is:

max
i :ti≤T

(ti +
∑

j :ti≤tj≤T
dj)

I (Knight i comes in his time, all next knights wait consecutively.)

I Make the maximized formula independent of T :

max
i :ti≤T

(ti +
∑
j :ti≤tj

dj)−
∑

j :T<tj

dj

I Right part: interval tree with sum

I Left part: adding/removing a knight affect a segment.

I So, interval tree with addition on a segment.

Problem K. King Kog’s Reception

I Let ti = arrival time, di = duration time.

I For query with time T the answer is:

max
i :ti≤T

(ti +
∑

j :ti≤tj≤T
dj)

I (Knight i comes in his time, all next knights wait consecutively.)

I Make the maximized formula independent of T :

max
i :ti≤T

(ti +
∑
j :ti≤tj

dj)−
∑

j :T<tj

dj

I Right part: interval tree with sum

I Left part: adding/removing a knight affect a segment.

I So, interval tree with addition on a segment.

Problem L. Lazyland
Author: Pavel Mavrin Statements and tests: Pavel Mavrin

Total
time

0h 1h 2h 3h 4h 5h

247

243

Java Kotlin C++ Python Total

Accepted 7 1 226 13 247
Rejected 14 0 204 25 243

Total 21 1 430 38 490

solution team att time size lang

Fastest BelarusianSU 1 1 7 965 C++
Shortest SUrSU 3 1 30 367 Python
Max atts. RybinskSATU 8 121 955 C++

Problem L. Lazyland

I For each job, find the idler with the maximum value of bi .

I Assign this job to this idler.

I Put all remaining idlers in the array, sort them by the value of bi .

I Assign idlers with minimum values to remaining jobs.

Problem L. Lazyland

I For each job, find the idler with the maximum value of bi .

I Assign this job to this idler.

I Put all remaining idlers in the array, sort them by the value of bi .

I Assign idlers with minimum values to remaining jobs.

Problem L. Lazyland

I For each job, find the idler with the maximum value of bi .

I Assign this job to this idler.

I Put all remaining idlers in the array, sort them by the value of bi .

I Assign idlers with minimum values to remaining jobs.

Problem M. Minegraphed
Author: Mikhail Dvorkin Statements and tests: Mikhail Dvorkin

Total
time

0h 1h 2h 3h 4h 5h

66

212

Java Kotlin C++ Python Total

Accepted 1 0 65 0 66
Rejected 6 0 206 0 212

Total 7 0 271 0 278

solution team att time size lang

Fastest ITMO 1 1 67 2304 C++
Shortest UrFU 7 3 254 1844 C++
Max atts. TbilisiIBSU 1 9 255 2286 C++

Problem M. Minegraphed

I Possible construnction: 3n × 3n × 3 parallelepiped.

I Vertex i : north-south tunnel in bottom layer + west-east tunnel in top layer.

I Full-length tunnels with 2 walls between: {x = 3i ∧ z = 0} ∪ {y = 3i ∧ z = 2}.
I For each i , make 2-step “staircase” from bottom to top.

I For each edge i → j , make vertical hole to fall from i-th top tunnel to j-th bottom
tunnel.

Problem M. Minegraphed

I Possible construnction: 3n × 3n × 3 parallelepiped.

I Vertex i : north-south tunnel in bottom layer + west-east tunnel in top layer.

I Full-length tunnels with 2 walls between: {x = 3i ∧ z = 0} ∪ {y = 3i ∧ z = 2}.

I For each i , make 2-step “staircase” from bottom to top.

I For each edge i → j , make vertical hole to fall from i-th top tunnel to j-th bottom
tunnel.

Problem M. Minegraphed

I Possible construnction: 3n × 3n × 3 parallelepiped.

I Vertex i : north-south tunnel in bottom layer + west-east tunnel in top layer.

I Full-length tunnels with 2 walls between: {x = 3i ∧ z = 0} ∪ {y = 3i ∧ z = 2}.
I For each i , make 2-step “staircase” from bottom to top.

I For each edge i → j , make vertical hole to fall from i-th top tunnel to j-th bottom
tunnel.

Problem M. Minegraphed

I Possible construnction: 3n × 3n × 3 parallelepiped.

I Vertex i : north-south tunnel in bottom layer + west-east tunnel in top layer.

I Full-length tunnels with 2 walls between: {x = 3i ∧ z = 0} ∪ {y = 3i ∧ z = 2}.
I For each i , make 2-step “staircase” from bottom to top.

I For each edge i → j , make vertical hole to fall from i-th top tunnel to j-th bottom
tunnel.

Credits

I Special thanks to all jury members and assistants
(in alphabetic order):

Andery Halyavin, Andrey Stankevich, Artem Vasilyev, Borys Minaiev, Dmitry Yakutov,
Evgeniy Kuprilyanskiy, Gennady Korotkevich, Gleb Evstropov, Ilya Zban,
Ivan Belonogov, Ivan Kazmenko, Mikhail Dvorkin, Mikhail Mirzayanov,
Mikhail Tikhomirov, Niyaz Nigmatullin, Oleg Hristenko, Pavel Irzhavski,

Pavel Kunyavskiy, Pavel Mavrin, Roman Elizarov, Vitaly Aksenov

