
ACM ICPC 2015–2016
Northeastern European Regional Contest

Problems Review

Roman Elizarov

December 6, 2015

Problems summary

I Recap: 224 teams, 12 problems, 5 hours,

I 20-th NEERC — Jubilee

I This review assumes the knowledge of the problem statements
(published separately on http://neerc.ifmo.ru/ web site)

I Summary table on the next slide lists problem name and stats
I author — author of the original idea
I acc — number of teams that had solved the problem (gray bar

denotes a fraction of the teams that solved the problem)
I runs — number of total attempts
I succ — overall successful attempts rate (percent of accepted

submissions to total, also shown as a bar)

Problems summary (2)

problem name author acc/runs succ

Adjustment Office Vitaliy Aksenov 196 /522 37%

Binary vs Decimal Mikhail Tikhomirov 12 /83 14%

Cactus Jubilee Mikhail Tikhomirov 14 /28 50%

Distance on Triangulation Gennady Korotkevich 9 /67 13%

Easy Problemset Andrey Lopatin 208 /281 74%

Froggy Ford Georgiy Korneev 101 /602 16%

Generators Elena Andreeva 153 /533 28%

Hypercube Oleg Khristenko 3 /15 20%

Iceberg Orders Egor Kulikov 0 /2 0%

Jump Maxim Buzdalov 52 /577 9%

King’s Inspection Mikhail Dvorkin 24 /253 9%

Landscape Improved Georgiy Korneev 56 /213 26%

Problem A. Adjustment Office

Total
time

0h 1h 2h 3h 4h 5h

196

326

Java C++ Total

Accepted 17 179 196
Rejected 53 273 326

Total 70 452 522

solution team att time size lang

Fastest SPbAU 1 1 7 1,051 C++
Shortest NU 14 2 41 529 C++
Max atts. UrSU 2 10 130 1,650 Java

Problem A. Adjustment Office (1)

I Recap: n × n grid, each cell (x , y) has value x + y

I Initial sum at row or column k is equal to nk + n(n+1)
2

I Maintain two pieces of data for rows and columns:
I The set of all zeroed out rows Sr and columns Sc, initially

both sets are empty
I Two sums sr,c =

∑
i∈{1...n}\Sr,c i , initially both sums are n(n+1)

2

I The result of row query “R r” is equal to:{(
n −|Sc|

)
r + sc if r /∈ Sr

0 otherwise

I If r /∈ Sr, then Sr ← Sr ∪ {r} and sr ← sr − r

I Similarly for column queries

Problem B. Binary vs Decimal

Total
time

0h 1h 2h 3h 4h 5h

12
71

Java C++ Total

Accepted 4 8 12
Rejected 4 67 71

Total 8 75 83

solution team att time size lang

Fastest SPb SU 1 2 73 1,914 Java
Shortest ITMO 1 1 112 1,193 Java
Max atts. MAI 5 269 256,031 C++

Problem B. Binary vs Decimal (1)
I It is easy to prove that 10k2 has 2k2 as a suffix, for example:

decimal binary

110 12
1010 10102

10010 11001002
100010 11111010002

I Let Ck be a set of all numbers less than 10k , whose decimal
representation is equal to its k last binary digits

I Let Ck = Ak ∪Bk , where all x ∈ Ak have k-th (counting from
zero) digit of 0 and all x ∈ Bk have k-th digit of 1

I Bk is a set of bindecimal numbers of length k — one we want
k Ak Bk
0 {0} {}
1 {0} {1}
2 {0, 1} {10, 11}
3 {0, 1, 10, 11} {100, 101, 110, 111}
4 {0, 1, 100, 101} {1000, 1001, 1100, 1101}

Problem B. Binary vs Decimal (2)

I Define a recursive rule to get Ck from Ck−1

Ak =
{
x

∣∣ x ∈ Ck−1 and k-th bit of x is zero
}

Bk =
{
x + 10k

∣∣ x ∈ Ck−1 and k-th bit of x is zero
}

Ck = Ak ∪ Bk

I Keep Ck as an ordered list, so when new Bk is computed as
defined above, the bindecimal numbers in Bk are produced in
ascending order; count them; stop when n-th bindecimal
number is found

I Note, that the max answer for n = 10 000 is around 10161, so
it will not fit into any standard data types; need long
arithmetics to implement it

Problem C. Cactus Jubilee

Total
time

0h 1h 2h 3h 4h 5h

14

14

Java C++ Total

Accepted 0 14 14
Rejected 0 14 14

Total 0 28 28

solution team att time size lang

Fastest Saratov SU 4 1 124 3,673 C++
Shortest Ural FU 1 2 151 2,735 C++
Max atts. MIPT 2 4 279 3,487 C++

Problem C. Cactus Jubilee (1)
I Depth-first search (DFS) of the cactus to split the edges of

the cactus into disjoint sets of bridge-trees Bi and cycles Ci
I Each back edge found during DFS signals a cycle
I Compute size of each Bi and a number of non-adjacent pairs

of edges during the first DFS; do a second DFS to push it to
all adjacent cycles

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

C1

C2

C3

C4

B1

Problem C. Cactus Jubilee (2)
I When an edge from a bridge-tree Bi is removed, cactus splits

into two connected components
I any pair of vertices from these two components can be

reconnected to get a cactus
I number of ways can be counted during initial DFS

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

Problem C. Cactus Jubilee (3)
I When an edge from a cycle Ci is removed, cactus is still

connected; bridge-trees adjacent to cycle merge
I any pair of non-adjacent vertices from the same bridge-tree

can be connected to get a cactus
I Scan all cycles to figure out the the number of ways to add an

edge for each cycle broken; multiple by the cycle size

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

Problem D. Distance on Triangulation

Total
time

0h 1h 2h 3h 4h 5h

9
58

Java C++ Total

Accepted 0 9 9
Rejected 2 56 58

Total 2 65 67

solution team att time size lang

Fastest NNSU 1 145 4,602 C++
Shortest SPbAU 1 1 235 3,579 C++
Max atts. SPb SU 3 6 266 7,846 C++

Problem D. Distance on Triangulation (1)

I Divide and conquer; prove that each triangulated polygon has
a diagonal that cuts at least n/3 vertices

I Randomly picking a diagonal does not work — will time limit

I Recursively split polygons this way for a total depth of
O(log n); get O(n) subpolygons of total size O(n log n)

I Terminal subpolygons for this problem are the ones that do
not have have any diagonals to split them further — triangles

1 2

3

45

6

Problem D. Distance on Triangulation (2)

I For each subpolygon precompute the shortest distances from
two ends of the diagonals of that was used to cut out this
subpolygon from the large one

I O(n log n) total memory to store the distances
I Can be done in O(n log n) by doing breadth-first search in each

subpolygon or in O(n log2 n) by doing recursive queries (see
below for query implementation)

I Each query can be answered in O(log n) recursively
I Terminal subpolygon (triangle) — trivial
I x and y in query are both on one side of splitting diagonal —

recursive query into the corresponding subpolygon
I x and y in query are on different sides — use precomputed

distances to diagonal ends (diagonals do not intersect, so
x − y path goes through one of the ends)

Problem E. Easy Problemset

Total
time

0h 1h 2h 3h 4h 5h

208

73

Java C++ Total

Accepted 17 191 208
Rejected 9 64 73

Total 26 255 281

solution team att time size lang

Fastest Ural FU 1 1 8 1,011 C++
Shortest NU 14 1 22 426 C++
Max atts. Kyrgyz-Turkish U 1 5 188 781 C++

Problem E. Easy Problemset (1)

I The easiest problem

I Just implement what the problem statement says

I Pay attention to judges without remaining problems — don’t
forget to propose a hard problem

I Sample inputs and outputs were designed to expose all the
tricky cases to make debugging easy

Problem F. Froggy Ford

Total
time

0h 1h 2h 3h 4h 5h

101
501

Java C++ Total

Accepted 5 96 101
Rejected 12 489 501

Total 17 585 602

solution team att time size lang

Fastest NNSU 1 41 2,281 C++
Shortest ITMO 4 1 85 1,600 C++
Max atts. Saratov SU 3 19 217 3,797 C++

Problem F. Froggy Ford (1)

I Consider a graph with vertices 1, . . . n corresponding to
stones, 0 for the left shore, n + 1 for the right one; obvious
way to compute distances between vertices

I The problem of finding the optimal route from 0 to n + 1 as
defined in problem is called minimax path problem

1

2

3

4

5

6

7

0

8

Problem F. Froggy Ford (2)

I Minimax path form 0 to all other vertices can be found by
Djikstra algorithm with a corresponding minimax update rule;
O(n2); no need to even have a heap in Djikstra

I Second invocation of the same algo to find minimax path
from n + 1 to all others

I A new optimal stone can be only at the center between a pair
of vertices (stone – stone, stone – shore, shore – shore)

I Check all pairs of vertices; O(n2)
I Use precomputed distances to 0 and to n + 1 to find distance

when new stone is placed; pick the optimal case
I Make sure to correctly implement distances between shores

(vertices 0 and n + 1); this case is not covered in sample input

Problem G. Generators

Total
time

0h 1h 2h 3h 4h 5h

153

380

Java C++ Total

Accepted 9 144 153
Rejected 53 327 380

Total 62 471 533

solution team att time size lang

Fastest MSU 3 1 29 3,169 C++
Shortest Ural FU 4 2 86 1,136 C++
Max atts. Far Eastern FU 19 262 1,699 C++

Problem G. Generators (1)

I Recap: x
(j)
i+1 =

(
a(j)x

(j)
i + b(j)

)
mod c(j)

I Generate c(j) numbers for each LCG — produce all numbers
this LCG can possibly generate; for each LCG find:

I the maximum x
(j)
tj ; pay attention to x

(j)
0 (don’t skip it)

I the second maximum x
(j)
uj , such that

(
x
(j)
tj − x

(j)
uj

)
mod k 6= 0

I Pay attention to cases when there is no second maximum, e.g.
all generated numbers are the same or all differences between
them are multiples of k

I When
∑n

j=1 x
(j)
tj mod k 6= 0 — that’s the answer

I Otherwise, find j such that
(
x
(j)
tj − x

(j)
uj

)
is maximized (if at

least one second maximum uj exists) and replace tj with uj
I Otherwise, there is no answer

Problem H. Hypercube

Total
time

0h 1h 2h 3h 4h 5h

3

12

Java C++ Total

Accepted 0 3 3
Rejected 0 12 12

Total 0 15 15

solution team att time size lang

Fastest SPb SU 1 1 175 2,241 C++
Shortest SPb SU 1 1 175 2,241 C++
Max atts. Ural FU 1 3 289 5,628 C++

Problem H. Hypercube (1)

I Disassemble tesseract into 8 cubic cells

I Start with an arbitrary cube of an octocube, assume it
corresponds to an arbitrary cell of tesseract

I Visit all cubes of a given octocube via DFS

I Each time a cube is visited, see what cell it shall correspond
to and if that cell was not used yet

I There are two conceptual ways to uniquely identify tesseract’s
cells and to traverse them

I 3D geometry — represent each cell via numbering of its 8
vertices; no 4D vector manipulations required

I 4D geomerty — represent each cell via a 4D vector normal;
leads to simpler code

Problem H. Hypercube (2)
I Disassembled tesseract with numbered vertices and normals

(-1,0,0,0)

(1,0,0,0)

(0,-1,0,0)

(0,1,0,0)

(0,0,-1,0)

(0,0,1,0)

(0,0,0,-1)

(0,0,0,1)

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0

8

4

12

1

9

5

13

2

10

6

14

3

11

7

15

0

8

2

10

1

9

3

11

4

12

6

14

5

13

7

15

0

4

2

6

1

5

3

7

8

12

10

14

9

13

11

15

x
y
t

z

Problem H. Hypercube (3)

I Solution using 3D geometry
I All vertices of a tesseract are numbered from 0 to 15
I Cell in a tesseract are represented by cubes of 8 vertex indices
I Moving in one of 6 directions in an given octocube, find 4

vertices in that direction on a corresponding face of the
current cube

I Among remaining cells find the one that can be
rotated/flipped (in 3D) to get a match of vertices
face-to-face — this is the next cell and its 3D rot’n/flip

0

4

2

6

1

5

3

7

1

5

3

7

9

13

11

15

Problem H. Hypercube (4)

I Solution using 4D geometry
I Keep track of a 4 × 4D vectors: 3 vectors define a basis for

current cell’s hyperplane, 4th vector defines a normal
I A normal also uniquely identifies a cell of a tesseract
I Moving in one of 6 directions in an given octocube, the

corresponding basis vector of the current hyperplane
(multiplied by ±1 depending on direction in the axis) becomes
the normal of the next cell; the former normal replaces basis
vector in that direction (multiplied by ∓1) — proper 4D rot’n

x

y

z

norm (0,0,0,-1)

x (0,0,0,1)

y

z

norm (1,0,0,0)

Problem I. Iceberg Orders

Total
time

0h 1h 2h 3h 4h 5h

2

Java C++ Total

Accepted 0 0 0
Rejected 0 2 2

Total 0 2 2

Problem I. Iceberg Orders (1)

I The structure of the code is hinted in the statement:
I keep buy and sell orders in the book separately in a sorted tree

maps keyed by the price
I at each price keep a list of orders ordered by priority
I this way finding a set of orders to match with is efficient —

O(k), where k is the number of orders to match with

I The solution is then mostly boils down to implementing what
the problem statement says, with one tricky case

I When big order (volume Va is big) comes in, it produces a lot
of trades with other orders that have small tip value TVb;
namely O(Va) trades — too many to simulate directly

I Recap: Va is up to 109; while the total number of different
matched order pairs is guaranteed not to exceed 105

Problem I. Iceberg Orders (2)

I The tricky case is addressed by figuring out how many times
m an incoming order fully matches with all orders at a current
price level

I m is found using binary search in O(p logVa) operations,
where p is the number of orders at a given price level

I Then, all the m matches can be simulated at one pass in
O(p); simulating remaining pass directly

I Care shall taken be in two additional cases
I when p � k make sure that O(k) operations are performed —

must do one direct order-by-order match at a given price level
first

I when incoming order volume Va is so big that the whole price
level with k orders is consumed, must do it in O(k); can afford
additional log in binary search only at the last matched price
level

Problem J. Jump

Total
time

0h 1h 2h 3h 4h 5h

52
525

Java C++ Total

Accepted 1 51 52
Rejected 43 482 525

Total 44 533 577

solution team att time size lang

Fastest Ural FU 1 1 33 1,401 C++
Shortest Ural FU 4 5 286 905 C++
Max atts. Perm SU 1 7 251 1,323 C++

Problem J. Jump (1)

I Recap: must solve in n + 500 queries

I Solve the problem in two phases: Phase I with up to 499
queries and Phase II with up to n + 1 queries

I Phase I: find QI such that Jump(QI) = n/2
I do random queries in this phase
I worst case when n = 1000, probability of guessing n/2 bits in a

single random query is
(1000

500)
21000 = 0.0252 . . .

I probability of not finding QI in 499 queries is 2.9× 10−6

I Just quit if Jump(QI) = n is found

I Phase II: find solution QII such that Jump(QII) = n
I for i = 2 . . . n do queries with Qi={QI bits 0 and i flipped}
I Jump(Qi) = n/2 if bits 0 and i has the same “correctness”
I assume 0 is correct bit in QI; make QII={QI all bits j ′ flipped}

where Jump(Qj′) 6= n/2; try query QII; quit if got n
I assume 0 is not correct; make QII={QI all bits j ′′ flipped}

where j ′′ = 0 or Jump(Qj′′) = n/2; must get Jump(QII) = n

Problem K. King’s Inspection

Total
time

0h 1h 2h 3h 4h 5h

24
229

Java C++ Total

Accepted 0 24 24
Rejected 6 223 229

Total 6 247 253

solution team att time size lang

Fastest MIPT 5 2 102 2,920 C++
Shortest ITMO 1 3 212 2,164 C++
Max atts. NEFU 1 9 279 2,865 C++

Problem K. King’s Inspection (1)

I Count in-degree d in
i and out-degree dout

i for each city i ; there
is no route if either is zero for any city (important check!)

I Identify special cites i : capital (i = 1) and cities with d in
i > 1

or dout
i > 1; there are at most 41 special cities

I Other cities are ordinary

captial (special) 1 2 ordinary

ordinary 3 4 special

Problem K. King’s Inspection (2)

I Merge all paths between special cities though ordinary cities.

I Ordinary cities: non-capital and d in
i = 1 and dout

i = 1
I For each special city create a list of outgoing paths to other

special cities
I there is no route if more than one outgoing path from a special

city requires going through ordinary cities
I if there is one outgoing path through ordinary cities, make it

the only path in the outgoing list

captial (special) 1 2

3 4 special

Problem K. King’s Inspection (3)

I The picture shows properly reduced graph; but the list of
cities on the reduced paths is still kept to print the answer

I Do exhaustive search (backtracking) for a path — at most 220

operations

I There are at most 20 special cities with some choice (more
that 1 outgoing path in list)

captial (special) 1 2

3 4 special

Problem L. Landscape Improved

Total
time

0h 1h 2h 3h 4h 5h

56

157

Java C++ Total

Accepted 2 54 56
Rejected 8 149 157

Total 10 203 213

solution team att time size lang

Fastest Saratov SU 4 1 53 2,969 C++
Shortest Kazakh-British TU 2 5 289 1,465 C++
Max atts. MIPT 3 9 298 2,880 C++

Problem L. Landscape Improved (1)

I Do binary search for the answer; try O(log n) guesses at the
answer in the process

I For each guess m of the answer count the number of squares
of stones required to build a mountain of height m, if it is
possible; compare the result with n

I Let ri be the number of squares of stones required to support
the mountain of height m with a peak at i at the right

i = 2

m = 7 r2 = 9

Problem L. Landscape Improved (2)

I Let li — the number to support at the left

I Total number of squares ti = li + ri + m − hi
I The number of required squares is min ti for all i

I ri is computed with a single pass for i from 1 to w in O(w)
I li with a single pass for i from w to 1
I overall time to find a solution is O(w log n)

i = 2

m = 7

l2 = inf cannot support at the left

Credits

I Special thanks to all jury members and assistants
(in alphabetic order):

Alexander Kaluzhin, Andrey Lopatin, Andrey Stankevich,
Artem Vasilyev, Borys Minaiev, Demid Kucherenko,
Dmitry Shtukenberg, Egor Kulikov, Elena Andreeva,

Gennady Korotkevich, Georgiy Korneev, Gleb Evstropov,
Grigoriy Shovkoplyas, Maxim Buzdalov, Mikhail Dvorkin,
Mikhail Pyaderkin, Mikhail Tikhomirov, Nikita Kravtsov,

Niyaz Nigmatullin, Oleg Hristenko, Pavel Krotkov,
Pavel Kunyavsky, Pavel Mavrin, Petr Mitrichev,

Viktor Omelyanenko, Vitaly Aksenov

