
ACM ICPC 2013–2014
Northeastern European Regional Contest

Problems Review

Roman Elizarov

December 1, 2013



Problem A. ASCII Puzzle

I The problem is solved by exhaustive search
I fill each spot in the trivial puzzle from the top-left to the

bottom-right corner
I try to place each piece that fits
I backtrack after trying all pieces for a place

I Must check which pieces can be placed on borders
I and place them only onto the corresponding borders
I otherwise time-limit will be exceeded



Problem B. Bonus Cards

I The problem is solved by dynamic programming

I Let k be the total number of tickets already distributed,
0 ≤ k ≤ n

I Let g be the number of ICPC card holders who already got
tickets, max(0, k − b) ≤ g ≤ min(a, k)

I Let Ps,k,g be the probability of Dmitry getting a ticket with a
card that has s slots in each draw round

I s = 2 for ICPC card, and s = 1 for ACM card

I Use the following equation to compute the desired probability
Ps,0,0 for each s:

Ps,k,g =
s + 2(a− g)Ps,k+1,g+1 + (b − k + g)Ps,k+1,g

s + 2(a− g) + (b − k + g)

I Here s + 2(a− g) + (b− k + g) is the total number of slots in
this draw round for Dmitry’s card, for a− g remaining ICPC
cards, and for b − k + g remaining ACM cards



Problem C. Cactus Automorphisms

I Use depth-first-search to find all cycles in the given graph G

I Build graph G ′ with original vertices, and where each cycle in
G is a new vertex, and each edge which is a part of a cycle is
a new vertex (new vertices are in white)

G G ′

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

1

2

3

4

5

6

7

8

9

10 11

1213

14

15



Problem C. Cactus Automorphisms (2)

I Graph G ′ is a tree

I G ′ has an even diameter and has the unique center

I The center of G ′ is either a vertex, a cycle or an edge in G
I Hang the graph G ′ using its center as a root and count a

number of automorphisms on a tree in bottom-up fashion
I k identical children of a vertex can be rearranged for k!

combinations
I children of a cycle in G can be rearranged for 2 combinations

if the sequence of children on this cycle can be reversed

I The root of tree G ′ needs a special attention when it
corresponds to a cycle in G

I it may have rotational symmetries and/or a mirror symmetry
I it may have a lot of children, so an efficient algorithm (like

Knuth-Morris-Pratt) must be used to find those symmetries



Problem D. Dictionary

I Let P be a set of prefixes for a
given set of words

I Build a weighted directed graph
with nodes P

I add an edge of weight 1 from a
prefix p to all prefixes pc (for all
characters c)

I add an edge of weight 0 from a
prefix p to a prefix q when q is a
suffix of p

I 1-edges of this graph constitute a
trie for a given set of words

I but it is not an optimal solution

I Minimum spanning tree in this
weighted directed graph
corresponds to the problem answer

I use Chu–Liu/Edmonds algorithm

“”

“a”

“ab”

“abc”

“abcd”

“c”

“cd”

“cde”

“cdef”

“cdefa”

1

1

1

1

1

1

1

1

1

0

0

0

An example for words
“abcd” and “cdefa”



Problem E. Easy Geometry

I Let (x , yt(x)) be the top point of the polygon at a given
coordinate x and (x , yb(x)) be the bottom point of the
polygon

I these functions can be computed by a binary search

I Let sw (x) be the max generalized square of a rectangle of the
fixed width w with the left edge at x

sw (x) = w × (min{yt(x), yt(x + w)} −max{yb(x), yb(x + w)})

I Let s(w) = max
x

sw (x) be the max square of a rectangle of the

fixed width w
I sw (x) is convex, so s(w) can be found by a ternary search

I Let s = max
w

s(w) be the max square of a rectangle — the

answer to the problem
I s(w) is convex, so s can be found by a ternary search



Problem F. Fraud Busters

I This is the simplest problem in the contest

I It is solved by going over a list of codes and checking each
one against a code that was recognized by the scanner



Problem G. Green Energy

I Compute coordinate z for each point — coordinate of the
projection onto a line perpendicular to the sun

I Place the largest tower at a point with the max z coordinate

I Place other towers in any order on points with decreasing z
coordinates so that they do not obscure each other

I If min z coordinate is reached and some towers are left, then
place them anywhere

α

tower

shadows

x

y z



Problem H. Hack Protection

I Compute cumulative xor values xi = ⊗j<i
j=1aj (⊗ for xor)

I this way, xor for any subarray [i , j) is equal to xi ⊗ xj

I Create a map M which keeps for each value of xi the list of
indices i with this value of xi

I Compute bi ,j — the first index at or after i where j-th bit of
ai becomes zero

I Loop for all i0 from 1 to n
I using bi,j one can quickly find consecutive ranges [ik , ik+1) of

indices where and of subarrays [i0, t) (ik ≤ t ≤ ik+1) has the
same value b

I note, that there are at most 32 such ranges for each i0
I use a map M to find a list of all indices with value of xi0 ⊗ b
I use a binary search on this list (twice) to find how many

indices from this list are in the range [ik , ik+1)
I that is the number of matching values for all subarrays [i0, t)



Problem I. Interactive Interception

I The state space of a point can be kept in array of min and
max possible position for each speed

I There are at most 105 possible speeds, so this array can be
scanned in a loop on each turn

I Find R that splits a state space roughly in half using binary
search

I Use “check 0 R” query

I Update the state space after reading the answer

I Repeat until the point’s position can be unambiguously
determined



Problem J. Join the Conversation

I The problem is solved by dynamic programming

I For each author maintain a map M from an author to a pair
of an index and a length of the maximal conversation with the
last message from this author

I Process messages in order, find all mentions in a message, and
update map M for the author of this message

I if you find mentions by looking at ‘@’ then do not forget to
check for a space before it

I the easiest way to find mentions is to split the message by
spaces



Problem K. Kabaleo Lite

I n = 1 is a special case
I the answer depends on the chip of the last player

I For n > 1 analyze the best strategy for other players:
I they place all chips onto the chips of your hidden color h
I they will obscure as many as possible of your chips on the

board, and will place as many as possible of other colors onto
the board

I Compute the maximal possible number of chips of each color
on the board according to the above

I Check each possible move of yours to find the answer
I you win only if the number of your color h on the board

exceeds any other number
I you need to maintain the number of only two best other color

to figure if the above is true


