
NEERC 2010 Problem Review

© Roman Elizarov

Alignment of Code

• Read each line and split it into words

• Compute max width of each word on a line

• Write the resulting text with the required
number of spaces between words

Binary Operation

• Write a procedure to compute for single digits:
a0 * a * a * … * a

\------------/ c times
▫ Repeat multiplies until it loops (after at most 10 muls)
▫ Use offset and period length to compute the result

• Write a procedure to compute for single digits:
a0 * a’ * (a+1)’ * … * b’

\--------------------/ d times
where +1 wraps to 0;
and a’ means “a * a * … * a” c times (as above)
▫ Compute loop similarly (can be as long as 100)

Binary Operation: altogether

• Compute the result digit by digit using two of the
above procedures

▫ For a digit i, round the number a up and b down
to the nearest multiply of 10i

▫ Represent the number range [a,b] as:

 X..XXaXX..X

 X..XX(a+1)00..0

 X..XXb00..0

 X..XXbXX..X

Cactus Revolution

• Use DFS to find and enumerate all loops in the
graph.

• Use DFS on a cactus to partition it:
▫ Each partitioning procedure returns the

remainder nodes that do not sum up to the target
size of partition (t = n/k).

▫ Partition a node by recursively partitioning the
loops it is a part of (with the exception of a parent
loop, if any) and it child nodes (with the exception
of a parent node, if any)

▫ Remainders must add up to less than target size

Cactus Revolution: loops

• Loops (without one node) are partitioned by
recursively partitioning all nodes on a loop, then
combining result.

• To combine the result we have to find an integer s
(0<=s<t), so that some number of first remainders
sum up to s, some next ones sum up to s + t, next to
s + 2t, etc.
▫ s is a running sum of remainders is modulo t.
▫ Find which sum module t is the most popular and try

it as a candidate s
▫ Treat zero reminders on a loop in a special way

Dome of Circus

• Assume we have a single point (x, y, z)
▫ Let us define v(h) = volume of a cone with height h

going through point (x, y, z). This function can be
computed with some basic geometry

▫ Function v(h) is convex

• For n points the volume is max(v(h)).
▫ It is also a convex function
▫ The optimal dome’s volume for the problem is the min

of this function
▫ It can be found using ternary search
▫ The radius r can be found using volume and h

Evacuation Plan

• Sort the team’s and shelter’s locations

• The optimal assignment will assign consecutive
ranges of teams to a shelter (after sort)

• Find the answer using two-parameter dynamic
programming considering this sub-problem:

▫ P(u,v) – the total fuel required to match the first u
teams to the first v shelters

▫ P(u,v) = |loc(u)-loc(v)| +
min(P(u-1,v-1), P(u-1,v))

Factorial Simplification

• Sort all ps and qs
• Find all prime numbers up to max p and q, and also

find the next prime number after that
• Compute the formula using representation of all

numbers as products of primes in some power
▫ Multiplication of numbers adds the powers
▫ Division of numbers subtracts the powers

• The largest factorial factor in the result can be as
large as the next prime minus 1.
▫ Find the result by repeated division by smaller and

smaller factorials

Game of 10

• Keep track of the game field after each move,
including the number of filled cells in each row
and column and their sums

• Use the following winning algorithm:
▫ If you can make a winning move (close row or

column with a sum of 10), then make it and
declare “WIN”

▫ If not, then take the previous opponent’s move
(r, c, k) and make a move (5 – r, c, 5 – k)

▫ Note that 10 = 1 + 2 + 3 + 4

Hands of Poker

• The only relevant information for ranking is the list
of card ranks (in the descending order) and a flag of
whether it is a flush or not.

• Generate all possible representation in the above
form (there are 7462 of those):

▫ Each rank can occur at most 4 times

▫ If any rank occurs more than once, it cannot be a flush

• Sort representations per problem statement

• Read hand, determine its representation and find its
place in a previously sorted array of representations

Ideal Path

• Find the distance from all nodes to n with BFS
• Start with a set containing node 1
• On each steps:

▫ Find the lowest color that can be used to go from a
node of the current set to the node with one less
distance to n

▫ Find next set of nodes with one less distance to n
going from the current set via the lowest possible
color

• The resulting sequence of colors in the answer

Jungle Outpost

• Use binary search to find an answer
• Assume the answer is m. Enemy blows up m

towers. Were the headquarters can be located to
be protected after destruction of any m towers?
▫ They can be located in some convex polygon
▫ This convex polygon is an intersection of half

planes going from point i to point i+m+1
▫ Using a procedure to intersect convex polygon

with a line we can figure if the resulting
intersection is empty (headquarters cannot be
made secure) or not

Jungle Outpost: alternative

• Instead of building convex polygon to check if it
is empty…

▫ Use simplex method to check if a set of n
inequalities has a common solution in two
variables x and y

▫ Or use randomized methods

K-Graph Oddity

• If an on an odd K-Graph at least one node has
the degree strictly less than k

• Run DFS starting from this node

• When backing out from DFS color each node

▫ Each node in DFS tree will have strictly less than k
children, so a unique color can be always found

