
Blueprint for Seating
Problem author: Artem Vasilyev; problem developer: Niyaz Nigmatullin

Consider any group not located next to a window. If the group consists of t seats, then the inconvenience
part of the group is s(t1) + s(t2), where t1 and t2 are chosen optimally such that t1 + t2 = t, and
s(x) = x(x−1)

2 .

For a group of t seats next to a window, the inconvenience part is s(t).

So the inconvenience is the sum of some s(r1) + s(r2) + . . .+ s(r2k). Each ri is either one of the two sizes
of groups next to a window, or one of the 2 · (k − 1) subgroups created by division of middle groups.

Consider we’ve chosen r, a = max ri and b = min ri such that a−b ≥ 2, then s(a−1)+s(b+1) < s(a)+s(b),
because

2 · (s(a− 1) + s(b+ 1)) = (a− 1) · (a− 2) + (b+ 1) · b
= (a− 1) · a− 2 · (a− 1) + (b− 1) · b+ 2b
= 2 · (s(a) + s(b)) + 2 · (b− a+ 1)
< 2 · (s(a) + s(b))

That’s because (b− a+ 1) is negative.

So the only way to divide is almost equally. The multiset of r: n mod (2k) times
⌈

n
2k

⌉
and 2k−(n mod (2k))

times
⌊

n
2k

⌋
.

We can iterate over four ways to choose the window groups, not considering, when the window group is
of size of 0. Then we need to calculate how to arrange middle groups.

We have (k − 1) middle groups, and x subgroups of size
⌊

n
2k

⌋
= t and y subgroups of size t+ 1.

Each group can be of size either 2t, or 2t+1, or 2t+2. If we iterate with number of groups of size 2t+1 say
g, then x−g

2 = f groups will be of size 2t and y−g
2 = h groups of size 2t+ 2. The number of arrangements

with the fixed g is the product of some binomial coefficients, for example
(
f+g+h

g

)
·
(
f+h
f

)
. We should only

consider cases, when f and h are non-negative integers. And we should handle the case when 2t equals
to zero, it means f needs to be zero as well.

The binomial coefficient can either be recalculated when iterating g, by several multiplications and
divisions. Another way to do it is to pre-calculate all factorials and their inverse modulo the given prime
number, and use them to calculate binomial coefficient in O(1). For a linear algorithm to pre-calculate
all inverse values modulo prime p you can use the following recurrent formula:

x−1 ≡ −(p mod x)−1 ·
⌊p
x

⌋
(mod p)

note that (p mod x)−1 can be calculated before x−1. The formula comes from relation p mod x = p−
⌊ p
x

⌋
·x.

The total time complexity for a single test case could be O(k) or O(k log k), depending on how you handle
the binomial coefficients.

Page 1 of 1


