
Fugitive Frenzy
Problem author and developer: Mikhail Ivanov

Let us call a state of the game initial if, from the police officer’s perspective, it is effectively same as the
beginning of the game in the vertex she is currently in (that is, the police officer does not have any sort
of information about the fugitive’s position except that he is not sharing a vertex with her). The state
before the first move of the game is indeed initial, but also such is every moment when the police officer
comes into a leaf (because at that moment all the other vertices form a connected component). Our aim
is to prove that, being in the initial state, the police officer should choose at random one of the leaves she
is not currently in and walk into it until she gets there and comes into another initial state. As for the
fugitive, after an initial state his optimal strategy is to choose at random a leaf unoccupied by the police
officer, move there and wait there till the next initial state. Moreover, the probabilistic distribution on
these leaves only depends on the accommodation vertex of the police officer in the initial state.

We will prove this in several steps. Firstly, we will assume that at the beginning each of the players
generates an infinite random binary string. Each time they need to make a random decision, instead of
accessing a random number generator they can just take another one bit (or several ones) from their
string. Therefore, we may assume that after the initial string generation their strategies are deterministic.
Such pair of strings, generated by the players, will be called an elementary event.

We may assume that the fugitive only hides in the leaves of the tree. Indeed, if he choses a non-leaf vertex
v, he can as well hide in any leaf reachable from v. It will not change the set of reachable vertices no
matter where the police officer moves, but might help him avoid the capture in some elementary events.

Next, we will note that the fugitive may be assumed to not change the shelter after the police officer’s
step towards him. To prove that, we will change his strategy as follows. Imagine that police officer is
in an initial state. Let us fix an elementary event and perform a simulation during which each time the
police officer moves, she moves towards the fugitive. At some moment she inevitably catches the fugitive
in some leaf `. Note that ` can be found deterministically because all randomness exploited by the fugitive
is contained within an already generated random string. Then, according to the new strategy, the fugitive
prematurely jumps into ` and waits till either he is caught or the police officer takes a step away from
him. It can be shown that, if the new strategy lead to a capture at some point, the previous strategy also
led to a capture no later than the new one elementary event-wise.

In a very similar fashion it can be shown that the police officer should never move along the same edge
twice in a row (unless the first of these moves led him into a leaf) — that is, the optimal strategy of
the police officer in an initial state consists of choosing some leaf and walking there. Also, with a similar
reasoning, it can be shown that the fugitive only needs to chosse his shelter at the beginning of the game
and after the police officer getting into a leaf (and thus triggering the initial state).

Therefore, the decisions in this game are only made in initial states. Thus, we can condense the game to
its initial states only and assume that the game now is as follows. The police officer appears in vertex s.
Then the players take turns, starting with the fugitive. At his turn, the fugitive, who knows the current
position of the police officer, chooses a leaf f , different from the police officer’s position, and sits there.
At the police officer’s turn, she chooses a leaf p′ and walks there from her current vertex p, spending
dist (p, p′) minutes. Then, if p′ 6= f , the game continues, otherwise, it ends.

In this setting it is easy to see that one move takes at most n−1 minutes, and the police officer can guess
the correct leaf and finish the game with probability at least 1

n−1 , therefore, the mathematical expectation
of the duration of the game, assuming the optimal play by the police officer, is no more than (n− 1)2, in
particular, it is finite.

Due to Nash, there is a pair of optimal strategies called the Nash equilibrium, in which the probabilistic
distribution only depends on the position of the police officer. Therefore, we have completed the proof of
the fact in question.

Let us fix the optimal strategy. Denote by pu,v the probability that, if the police officer is initially in u,
she chooses to walk to v. Denote by qu,v the probability that, if the police officer is initially in u, the

Page 1 of 3

fugitive chooses to hide in v. Denote by xu the mathematical expectation of the duration of the game if
the police officer is initially in u. According to the previous reasoning, pu,v = qu,v = 0 unless v is a leaf
different from u.

We will prove the converse: both pu,v and qu,v are positive if v is a leaf different from u. To see why,
firstly we will assume that qu,v = 0 — that is, when the police officer is in u the fugitive never choses to
hide in v. Then the police officer, if pu,v > 0, can modify her strategy so that she does not visit v, e.g. by
stopping right before visiting v and choosing the next leaf right there. This circumstance would violate
the Nash equilibrium. Therefore, qu,v = 0 implies pu,v = 0. Similarly, one can deduce that if pu,v = 0 for
a leaf v 6= u but pu,v′ > 0 for some other leaf v′ then qu,v′ = 0: otherwise, the fugitive could modify his
strategy and hide in v instead of v′, ensuring he doesn’t get caught and prolonging the chase. But, as we
showed earlier, qu,v′ = 0 implies pu,v′ = 0, and that leads to a contradiction. So pu,v cannot equal zero for
a leaf v 6= u, and so cannot qu,v.

So, each of pu,v and qu,v is non-zero if and only if v is a leaf different from u. Our last goal is to calculate
the values of pu,v, qu,v and xu. To do that, we will write down several equations on these numbers. Denote
by L the set of leaves of the tree. Firstly, xu, as the mathematical expectation of the duration of the chase,
satisfies:

xu =
∑

v∈L\{u}

F (u, v) where F (u, v) = pu,v(dist (u, v) + (1− qu,v)xv).

Also, as a solution to an optimization problem, pu,v and qu,v satisfy complementary slackness
conditions (as a part of Karush–Kuhn–Tucker conditions). Namely, note that if, for a fixed u,
Pu(v) = ∂

∂pu,v
F (u, v) = (dist (u, v) + (1− qu,v)xv) differs for two different vertices v ∈ L \ {u}, then

it would be profitable for the police officer to always walk into the vertex with the lower value of Pu(v),
and that would violate the Nash equilibrium. Similarly, for a fixed u, Qu(v) = ∂

∂qu,v
F (u, v) = −pu,vxv

should be equal among all v ∈ L \ {u}, otherwise the fugitive would have the incentive to only hide in the
vertices v with the maximum Qu(v) and violate the Nash equilibrium from his side.

The aforementioned complementary slackness conditions can be reformulated in the following way: if in
the function F (u, v) = pu,v(dist (u, v) + (1− qu,v)xv) one replaces the array pu,v with any other array
with a unit sum, which vanishes on v /∈ L \ {u}, then the value of F (u, v) does not change. Similarly, if
one replaces the array qu,v with any other array with a unit sum, which vanishes on v /∈ L \ {u}, then the
value of F (u, v) does not change. (But if one does the both modifications, then F (u, v) might change.)

Now we are ready to write a system of equations on the numbers xu. All numbers pu,vxv are equal to each
other, so, for a fixed v ∈ L \ {u},

1 =
∑

w∈L\{u}

pu,w =
∑

w∈L\{u}

pu,wxw ·
1

xw
=

∑
w∈L\{u}

pu,vxv ·
1

xw
= pu,vxv ·

∑
w∈L\{u}

1

xw
,

therefore,

pu,v =
1/xv∑

w∈L\{u} 1/xw
.

Let us substitute this expression in the formula for F (u, v):

F (u, v) =
1/xv∑

w∈L\{u} 1/xw
(dist (u, v) + (1− qu,v)xv).

It was said earlier that the array qu,v can be chosen arbitrarily if the unit sum is preserved. We will fix a
vertex t ∈ L \ {u} and take qu,v = [v = t] — that is, qu,t = 1 and the rest of the qu,v are taken zero. After
this substitution, F (u, v) stays the same:

F (u, v) =
1/xv∑

w∈L\{u} 1/xw
(dist (u, v) + xv − [v = t]xt).

The formula for xu takes the form:

xu =
∑

v∈L\{u}

1/xv∑
w∈L\{u} 1/xw

(dist (u, v) + xv − [v = t]xv).

Page 2 of 3

The xv − [v = t]xv part can be removed from under the summation sign:

xu =
|L \ {u}|∑

w∈L\{u} 1/xw
− 1∑

w∈L\{u} 1/xw
+

∑
v∈L\{u}

1/xv∑
w∈L\{u} 1/xw

dist (u, v).

This already yields a rather convenient expression:

xu =
|L| − 2 + [u /∈ L] +

∑
v∈L\{u} dist (u, v)/xv∑

v∈L\{u} 1/xv
.

However, to get a bit more symmetric form, one can multiply it by the denominator:

xu ·
∑

v∈L\{u}

1/xv = |L| − 2 + [u /∈ L] +
∑

v∈L\{u}

dist (u, v)/xv.

Then, if u ∈ L, we can add one to both sides (or, equivalently, add [u ∈ L] to both sides):

xu ·
∑
v∈L

1/xv = |L| − 1 +
∑
v∈L

dist (u, v)/xv.

Finally, let us divide it back:

xu =
|L| − 1 +

∑
v∈L dist (u, v)/xv∑
v∈L 1/xv

.

Unfortunately, this system of equations is very unlikely to have a clear way to be solved analytically in
general case. Even for small trees the exact formulae begin to look gargantuan, and there are really few
classes of trees with neat formulae (e.g. star, bamboo, pair of equal stars connected by a bamboo). Instead,
one can take some initial approximation, e.g. xu = 1 or xu = (n− 1)2, and iteratively apply the formula
above to get a more and more precise answer. This process seems to converge relatively fast, although
jury does not have a proof of that. What is worth noting is that, at first, it is reasonable to only calculate
xu for u ∈ L (since these are the only xu which occur in the right hand side), and in the end, when the
leaf expectations are already calculated with satisfying precision, calculate the rest of the expectations
with one iteration over all u ∈ L.

One more possible speedup is to work with yu = 1/xu instead of xu, since this would lead to a much
smaller number of divisions:

yu =

∑
v∈L yv

|L| − 1 +
∑

v∈L dist (u, v)yv
.

This final approach works in O
(
n`+ q`2 + n`

)
= O

(
n`+ q`2

)
, where n = |V |, ` = |L| and q is the number

of iterations: the first n` summand stands for finding the pairwise distances between the vertices and the
leaves, q`2 stands for the iterative algorithm for finding the leaf values of xu, and the last n` summand
stands for calculating the rest of the values of xu. In practice, for n ≤ 100, q = 1500 or q = 2000 and a
64-bit floating point number type were enough to pass all tests, depending on the quality of the initial
approximation. The time limit for this problem is pretty loose, so even Python solutions should pass with
a reasonable implementation.

Page 3 of 3

