
ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

Problem A. ASCII Automata Art
Problem author and developer: Roman Elizarov

This is a simple problem. You just need to implement the requirements from the problem statement. The
example in the problem statement was specifically designed to cover various cases to make debugging of
the problem straightforward.

This problem is solved by parsing the regular expressions and then recursively generating the
corresponding boxes as specified in the problem statement. Parsing of such grammar can be implemented
using recursive descent.

The only tricky part of the problem is how neighboring letters that parse to a single 〈term〉 should be
grouped into a single 3 × (4 + n) box. There are two ways to go about it. One is to parse the regular
expression into an intermediate tree structure first. This makes it straightforward to distinguish a case
of “RC” (where a 〈term〉 consists of two single-letter 〈atom〉 non-terminals and which renders as a single
box) from the case of “RC+” (where a 〈term〉 consists of one letter 〈atom〉 and one 〈atom〉 that uses “+”
operator).

Alternatively, a plain recursive descend can be modified to include a lookahead to distinguish those two
cases. It allows combining parsing and generation of the resulting boxes into a single recursive algorithm
without intermediate data structures.

Problem B. Button Lock
Problem author and developer: Artem Vasilyev

Let’s build a directed graph on given sets of digits. There is an edge A → B iff A is a subset of B. The
problem can be now restated as follows: cover all vertices by disjoint paths, the cost of the path is the
size of the last set in that path plus one (let’s pretend that we will reset after each path, and then remove
the last “R”).

The path cover problem is usually solved by bipartite matching: we create a bipartite graph with two
parts corresponding to vertices of the original graph, and make edges A → B into an undirected edge
from AL to BR. The maximum matching in this graph corresponds to the path cover with the minimum
number of paths (equivalently, the minimum number of edges).

But in this problem, paths have cost: the size of the end vertex plus one. Each vertex that is at the end
of a path corresponds to the vertex in the left part that is not covered by the matching. Thus, we need
to find the matching in the bipartite graph, such that the cost of non-covered vertices in the left part
is minimized, equivalently, the cost of covered vertices is maximized. This problem can be solved by a
greedy algorithm: let’s sort all the vertices in the order of decreasing cost, and run Kuhn’s algorithm in
this order. If a vertex gets a match during Kuhn’s algorithm, it never gets unmatched later and vice versa.
Afterward, build paths from edges in the maximum matching.

The bipartite graph contains at most 2d vertices in each part and at most 3d edges, so the pessimistic
upper bound on the runtime is O(6d), but Kuhn’s algorithm is often faster than that, especially on graphs
with a special structure.

Problem C. Cactus Not Enough
Problem author: Vitaly Aksenov; problem developer: Andrei Lopatin

First of all, let’s find a condition for a graph being a strong cactus. Consider all 2-vertex-connected
components of the graph. If a graph is a cactus, each of them is either a cycle or a single edge. If there are
two single-edge components that share a vertex, the graph isn’t a strong cactus, because an edge between
other vertices can be added. On the other hand, if there are no such components, no edge could be added,
because a path between the ends would cover at least one edge, which already lies on cycle, and this edge

Page 1 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

would lie on two cycles if we add the first edge. A more convenient form of the same statement is “a cactus
is strong, iff after removing all edges lying on cycles, each connected component has at most one edge.”

Consider a set of edges ei we add to the graph. Let pi be any simple path on the initial graph between
ends of edges ei. The graph should still be a cactus, so none of this path can go through any edge lying on
a cycle. So, these paths are unique, and the problem is independent of each of the connected components
after removing all cycles. Also, these paths must not intersect, or an edge lying on two of them will lie on
two cycles. So, our problem is split into several instances of the following problem: given a tree, find the
minimum number of paths after removing which no two edges would be incident.

This problem could be solved either by dynamic programming or by a greedy algorithm. Dynamic
programming is quite straightforward on the state of the subtree, the prefix of sons already covered,
did we cover edge from the parent, do we have a not covered edge. But implementing it (especially
building the answer itself) is quite error-prone, so let’s focus on the greedy algorithm.

In fact, we need to remove some matching from a tree, and after that, cover the tree with paths. The
number of paths required to cover the full tree is equal to the number of vertices with an odd degree
divided by two. This can be done by making each edge a single path and then joining paths in each vertex
in any way until it has at most one end of a path. There would be exactly one path end at each odd-degree
vertex after that. So, we need to find a matching minimizing the number of odd-degree vertices. Edges,
which have at least one even-degree end can be removed from this matching because they do not decrease
the number of odd-degree vertices. So we only need just to find the maximum matching on vertices with
odd degree, which can be done with a greedy algorithm, because our graph is a tree.

In fact, one can just go from bottom to top, joining paths in any way, and creating a new path, only
when it must be created. It can be shown, that this greedy algorithm will leave uncovered exactly this
greedy-found maximum matching on odd-degree vertices, and some edges between unmatched odd-degree
vertices with even-degree, which doesn’t change the number of paths.

Problem D. Digits
Problem author and developer: Pavel Marvin

There are several solutions to this problem. We’ll try to explain the simplest one.

First, let’s notice that if d is odd, then we can ignore all even ai. Similarly, if d is not divisible by 5, then
we can ignore all ai divisible by 5. Now let’s add all the remaining numbers in the set and look at the
last digit of the product. If this digit is d, then we are done. If not, let’s try to remove some numbers
from the set to make the last digit equal to d. It’s easy to see it’s never optimal to remove more than
3 numbers since there are only 4 different remainders modulo 5. Now we can use the following dynamic
programming. Let d[i][j] be the minimal possible product of numbers not taken into the set for the
first i elements and last digit j. This DP can be easily calculated in O(n · 10) time.

Problem E. Equilibrium Point /\/\
Problem author and developer: Mikhail Dvorkin

First, let’s definitely leave non-integer arithmetics, as it is slower and error-prone.

When working with some sequence, the state describing everything we will need for future usage is
(m,x, y), where m is its mass, x is x-coordinate of its center of mass, y is y-coordinate of its center of
mass.

However, x and y are not necessarily integer, although rational. To reach the only-integer world, let’s
rather store: (m,xm, 3ym). There three numbers store the same information but are integer.

Another approach is to switch from diagonal-style diagrams to Young diagrams. This is done by a simple
45◦ rotation, and in this world for each subdiagram you need to store just (m,xm, ym), without an ugly
coefficient 3.

Page 2 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

Now when we are in the integer world, we can think of the process of generation of all bracket sequences
together with their center-of-mass information.

Remember that one of the formal grammars describing bracket sequences is S → (S)S|ε. So to obtain
sequences of length n we can pair up in the “(S)S” manner all sequences of lengths 2i and n− 2i− 2, for
all i. The new center-of-mass information is not so ugly, here’s the formulas for the new triple if the left
sequence has length 2i:

left sequence of length 2i
/ \right sequence of length n-2i-2

• mnew = mleft +mright + 2i+ 1;

• xmnew = xmleft +mleft + xmright + (2i+ 2)mright + (i+ 1)(2i+ 1);

• ymTriplednew = ymTripledleft + 3mleft + ymTripledright + 3i+ 1.

We can now generate all bracket sequences of length n and check each one if it has the desired center of
mass.

This process is exponential, but as soon as we store only sequences with distinct center-of-mass
information, it becomes polynomial. Indeed, each element of (m,xm, 3ym) has a polynomial number
of possible values, as m ≤ n2, and x, y ≤ n.
Here’s the data for the numbers of center-of-mass distinct sequences:

• length 32: 478615 distinct out of 35357670;

• length 34: 841858 distinct out of 129644790;

• length 36: 1427986 distinct out of 477638700.

The problem can be solved by doing all of the above in a neat time-saving code style: storing center-of-mass
information and sequences efficiently, and doing as little non-integer arithmetic operations as possible.

Or, you can use meet-in-the-middle approach. Calculate all sequences, not necessarily with zero balance,
of length n/2, and for each left half, try to obtain a right half that fits exactly. That is, iterate over all
possible masses of the right half, and having fixed this mass, you know the x and y of the right half that
you need, so you can look it up in the map quickly.

Finally, quite different working approach is:

• Select the set of column heights such that the y coordinate of the center mass is the desired one.
Since we’re not caring about x coordinates here, this can be done by full search. Actually, there are
several appropriate sets, so for each of them:

• Find their horizontal allocation such that the x coordinate of the center mass is the desired one.
Once again, the search space is not so large, so a full search will work.

Problem F. Fiber Shape
Problem author and developer: Artem Vasilyev

Consider some specific direction (for example, the positive direction of X axis), and find the extreme point
P in that direction. There are two support points, Ai and Aj , that determine the shape of the curve in
the neighborhood of P : for every point, the sum of distances to i and j is constant and equal to l minus
the part of the polygon from Aj to Ai. This shape is an ellipse with foci Ai and Aj . The major and the
minor axis can be determined from the sum of distances.

Page 3 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

Ai

Aj

P

Thus, the entire curve consists of pieces of ellipses. When does the curve switch from one ellipse to another
while moving counterclockwise? This happens when support points change: either Ai+1 becomes the next
support point, either Aj is no longer a support point. This happens when points Ai, Ai+1 and P or Aj ,
Aj+1 and P are on the same line. We can determine when this happens by intersecting the rays AiAi+1 and
Aj+1Aj with the current ellipse and taking the closest intersection point (and changing the corresponding
support point). We can go around the polygon and compute all the ellipse pieces that form the curve in
O(n) time. It’s convenient to start the process when i = 0. To do that we find the furthest point of form
A0 +

−−−−−→
An−1A0t with a binary search on t and checking the length of the perimeter.

To find the area of the curve we will use the Greene’s formula 1
2

∮
C

x dy−y dx = 1
2

∮
C

(x(t)y′(t)−y(t)x′(t)) dt.

By additivity, this integral breaks down into integrals over ellipse pieces. We found that this angular
parametrization works best with this integral: P (α) = O + −→e1A cos(α) + −→e2B sin(α). Here, O is the
center of the ellipse, A and B are the lengths of the major and minor axes, and e1 and e2 are
unit vectors corresponding to major and minor axes. Let’s simplify the formula inside the integral
x(t)y′(t) − y(t)x′(t) = (x(t), y(t)) × (x′(t), y′(t)), where A × B is the cross product of vectors A and
B.

(x(t), y(t)) = O +−→e1A cos(α) +−→e2B sin(α)

(x′(t), y′(t)) = −−→e1A sin(α) +−→e2B cos(α)

(x(t), y(t))× (x′(t), y′(t)) = −(O ×−→e1)A sin(α) + (O ×−→e2)B cos(α) +AB

Then,
α2∫
α1

(−(O ×−→e1)A sin(α) + (O ×−→e2)B cos(α) +AB) dα can be easily calculated.

Problem G. Guide
Problem author and developer: Vitaly Aksenov

Suppose for a moment that we have to visit exactly k vertices and return to the capital. In this case, it
can be proven that the minimal length of the traversed path should be 2(k− 1). However, in our problem
we do not have to return to the capital: thus, the best way is to stop the traversal at the deepest vertex
possible. So, we have to find a vertex v which is the deepest and which depth does not exceed k. Then,
we have to simply restore some such path. To do that, for example, we count the number of vertices on
the path to v and run a depth-first search from the vertices on the path until we visit k vertices.

Problem H. Hard Optimization
Problem author and developer: Gennady Korotkevich

A laminar set of segments clearly forms a forest-like structure: outer segments (not contained in any other
ones) are the roots of the trees, segments that are only contained in outer segments are their children,
and so on, recursively.

Page 4 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

Recovering the tree structure can be done using sorting and a stack. Go through all segments in increasing
order of Li, and keep a stack that describes the current rightmost path in the tree. For each segment, pop
the segments that are fully on the left of it from the stack. After that, we know that the top of the stack
is the parent of this segment (if the stack is empty, this segment is the root of a new tree), and we push
the segment onto the stack.

On these trees, we are going to use dynamic programming. The basic idea is that if some segment i has
children s1, s2, . . . , sk, its optimal subsegment position is one of the following:

1. to the left of segment s1, possibly extending onto the prefix of segment s1;

2. between segments sj and sj+1 for some j, possibly extending onto the suffix of segment sj and the
prefix of segment sj+1;

3. to the right of segment sk, possibly extending onto the suffix of segment sk;

4. strictly inside segment sj for some j.

We will calculate DP from bottom to top. Our DP state will have the following variables:

• integer i: current segment (subtree root);

• boolean hl: whether there’s currently a subsegment ending at li;

• boolean hr: whether there’s currently a subsegment starting at ri;

• integer k: how many subsegments should be placed inside segment i’s subtree.

To make transitions, we can use another DP going through segment i’s children. For each of the k+1 areas
(to the left of s1, between sj and sj+1, to the right of sk) we should decide whether there’s a subsegment
covering that area, and for each of the k segments, we should decide how many “outer” subsegments go
into their subtrees.

Finally, note that k in our DP state can be limited by the size of segment i’s subtree, because we can
always cover the whole segment i having at least that many “outer” subsegments. Therefore, merging DP
tables of two subtrees can be done in time proportional to the product of their sizes, and the overall
complexity of our DP can be bounded by O(n2).

Problem I. Is It Rated?
Problem author and developer: Petr Mitrichev

See https://en.wikipedia.org/wiki/Randomized_weighted_majority_algorithm for more details.

Intuitively, we want to place more trust in the predictions of those participants that have already made
fewer mistakes. The most radical version of this would be to only trust the participants with the smallest
number of mistakes in any given wager; when there are multiple such participants and their predictions
differ, we can, for example, choose the prediction which has the most such “best participant” votes behind
it. And in case even those are tied, we can flip a coin.

However, it turns out that this solution is not good enough, and trusting just the best participants
can backfire. For example, consider the following two wagers with two participants, which can be easily
generalized to any even number of participants: 01 (correct 1), then 10 (correct 1). Each participant has
made one mistake, while we have made 0.5 mistakes in the first wager on average, plus 1 mistake in the
second wager (because the participant who was correct in the first wager makes a mistake there), so we’re
going to be 1.5 times worse than the worst participant if this is repeated many times, which is not good
enough.

Therefore, we need to make two improvements to the aforementioned solution:

Page 5 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

• Instead of just considering the votes of the participants that have made the smallest number of
mistakes only, we will assign weight βx to the vote of a participant that has made x mistakes, where
0 < β < 1 is some value that we’ll choose later.

• Instead of choosing the prediction that gets the most (weighted) votes, we will choose the prediction
randomly, using the fraction of the total vote weight that favors this prediction as the probability
of us choosing it.

You can check the “Analysis” section of the Wikipedia article mentioned above for the (relatively
straightforward) proof that this approach is now good enough for the appropriate values of β. β = 3

4
passes with a margin of 6 standard deviations, but any value of β between roughly 1

2 and 19
20 was good

enough.

Note that in order to avoid floating-point underflow, we should use βx−y instead of just βx as the vote
weights, where y is the smallest number of mistakes that any participant has made so far.

Note that the judges are not aware of any deterministic solution that passes in this problem. The approach
mentioned in the beginning, where we choose the prediction that has the most weighted votes instead
of picking randomly with the appropriate probabilities, ends up being almost twice as worse in the case
where the votes are split 51/49 in favor of the wrong prediction every time.

Problem J. Japanese Game
Problem author and developer: Dmitry Yakutov

One can calculate mask m of profile p with the following algorithm. Let’s place sets of consecutive blocks
in p as left as possible. Let k be the number of empty cells at the end of the row of n cells after the
placement (maybe 0). Then we should erase k first filled cells in every set of p. If some set consists of less
than k cells then erase all the cells in the set.

Example with n = 10. Black cells represent mask m. Grey cells represent the cells we’ve erased while
calculating m. k = 2 in this case.

We are given mask m. If we know the exact profile p then m can be found by the algorithm above. Let’s
iterate over values of k in this algorithm. It is bounded by the following numbers:

• Number of empty cells at the beginning of m;

• Number of empty cells at the end of m;

• ai− 1 where ai is the number of empty cells between i-th and i+1-th sets of consecutive filled cells
in mask m.

Let’s try to create a profile p with mask m with the specified value of k.

Every set of consecutive filled cells in m should be extended to the left with k filled cells. k last cells of
the row of n cells should be empty. Let’s cut them out. Now we have some sets of consecutive empty cells
at the beginning, at the end, and between sets of filled cells.

If there is exactly one empty cell at the beginning of the row, then such a value of k is not suitable.
Otherwise, let’s try to fill some of these cells with sets of 1 and 2 consecutive cells. Note that we can use
sets of 2 cells only if k ≥ 2.

The same algorithm can be used at the end of the row. Also, it can be used between sets of consecutive
filled cells: if there is exactly one empty cell between sets, then it is already filled, and if there are exactly
two empty cells, then it is impossible.

Page 6 of 7



ICPC 2020–2021, NERC – Northern Eurasia Finals, Onsite
St. Petersburg, Minsk, Tbilisi, Riga – April 4th, 2021

It gives us a solution with O(n2) time complexity. In the solution above, we haven’t used more than 2
consecutive cells, so it can be improved as follows. If k ≥ 4 and we have found the exact profile p then
there exists a profile p′ with k′ = k− 2. All we need is to add a set of single-filled cells between every pair
of adjacent sets of m and at the end of the row. It means there is no need to check values of k ≥ 4, so the
resulting complexity is O(n).

Problem K. King’s Task
Problem author and developer: Pavel Marvin

First, let’s notice that both operations are self-inverse, i.e. if you apply the same operation twice, you get
the initial permutation. So, if you make a sequence of operations, these operations must have alternating
types.

Let’s fix the type of the first operation, and simulate the process until we either find the sorted permutation
or return to the initial permutation.

How many operations can we do until we enter the loop? If n is even, then the length of the cycle is 4. For
example, the first element of the permutation moves in the following cycle: 1→ 2→ (n+2)→ (n+1)→ 1.

If n is odd, then the length of the cycle is 2n. For example, the first element of the permutation moves in
the following cycle: 1→ 2→ (n+ 2)→ (n+ 3)→ 3→ 4→ . . .→ 2n→ n→ (n+ 1)→ 1.

So it’s always enough to make max(2n, 4) steps to find the sorted permutation or return to the initial
permutation.

The time complexity of this solution is O(n2). It is possible to implement a faster algorithm, but we
decided to make this problem easier.

Page 7 of 7


