
ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

Problems summary

Recap: 274 teams, 12 problems, 5 hours. This analysis assumes knowledge of the problem statements
(published separately on http://neerc.ifmo.ru/ web site).

Summary table lists problem name and stats:

• author — author of the original idea
• developer — developer of the problem statement and tests
• acc — the number of teams that had solved the problem (gray bar denotes a fraction of the teams

that solved the problem)
• runs — the number of total attempts
• succ — overall successful attempts rate (percent of accepted submissions to total, also shown as a

bar)

problem name author developer acc/runs succ

Archery Tournament Maxim Akhmedov Artem Vasilyev 70 /692 10%

Box Georgiy Korneev Niyaz Nigmatullin 234 /701 33%

Connections Pavel Irzhavski Pavel Irzhavski 127 /892 14%
Designing the Toy Maxim Akhmedov Maxim Akhmedov 91 /437 20%
Easy Quest Pavel Mavrin Pavel Mavrin 235 /796 29%

The Final Level Georgiy Korneev Pavel Kunyavsky 25 /138 18%

The Great Wall Vitaliy Aksenov Vitaliy Aksenov 3 /29 10%

Hack Petr Mitrichev Petr Mitrichev 0 /1 0%

Interactive Sort Borys Minaiev Borys Minaiev 20 /163 12%
Journey from
Petersburg to Moscow Gleb Evstropov Gleb Evstropov 3 /34 8%
Knapsack
Cryptosystem Mikhail Dvorkin Mikhail Dvorkin 3 /69 4%

Laminar Family Maxim Akhmedov Maxim Akhmedov 23 /152 15%

Problem A. Archery Tournament
Author: Maxim Akhmedov
Statement and tests: Artem Vasilyev

Total
time

0h 1h 2h 3h 4h 5h

70
622

Java Kotlin C++ Python Total
Accepted 1 0 69 0 70
Rejected 50 12 531 29 622

Total 51 12 600 29 692

solution team att time size lang
Fastest Kazakh-British TU 1 1 41 2,606 C++
Shortest Tartu U 1 3 115 1,116 C++
Max atts. Belarusian SU 2 11 199 2,018 C++

Page 1 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

The main observation for this problem is that you do not have to check many circles. More specifically,
there are O(logC) (C = 109) circles intersecting any vertical line.

For simplicity, let’s only consider circles which center is to the left of the vertical line x = 0. Consider
this «critical» position of two circles. In this picture, x1 = −y1 and x2 = 0. Then, formula describing the
touching of these two circles (x1 − x2)2 + (y1 − y2)2 = (y1 + y2)

2 becomes y21 + (y1 − y2)2 = (y1 + y2)
2

which simplifies to y21 = 4y1y2 and y2 = 1
4y1. So, the number of circles to the left of x = 0 does not exceed

log4C, the same is true for circles on the right.

(x1, y1)

(x2, y2)

-35 -30 -25 -20 -15 -10 -5 0 5

In this picture, y1 = 20, y2 = 5, y2 =
1
4y1

Now the remaining part of the solution is to build an efficient data structure that allows to extract all
candidate circles crossing the given vertical line and check all of them. It is equivalent to maintaining the
set of segments and retrieving all segments containing the given point. This can be done with a simple
segment tree.

Let’s compress all x values and build a segment tree T with a max operation. For segment [l, r] set the
value of T [l] to r (assuming all x-coordinates are different). To answer the «2 x y» query, we need to
check all such l ≤ x that T [l] ≥ x. It is possible to do with a single tree descent. Suppose we are currently
at a vertex corresponding to segment [L,R]:

• If L > x or max[L..R] < x, then exit.

• If the current vertex is a leaf, report L as the possible candidate.

• Otherwise, go to the left and right subtrees recursively.

Since there are only O(logC) circles covering any vertical line, this procedure works in O(log n logC)
time. When a new segment [l, r] appears, set T [l] = r. To delete a segment, set T [l] = −∞. Both of these
operations can be done in O(log n) time.

The total time complexity of this solution is O(n log n logC).

Problem B. Box
Author: Georgiy Korneev
Statement and tests: Niyaz Nigmatullin

Page 2 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

Total
time

0h 1h 2h 3h 4h 5h

234

467

Java Kotlin C++ Python Total
Accepted 11 1 211 11 234
Rejected 12 5 432 18 467

Total 23 6 643 29 701

solution team att time size lang
Fastest Vilnius U 1 1 16 1,046 C++
Shortest Omsk STU 2 59 424 Python
Max atts. Vilnius U 2 20 245 5,547 C++

One can see that only two of the given 11 types of cube nets are required to be checked. For parallelepipeds
the same is true: one can check all the possible orderings of (a, b, c) and (w, h) and check if the same two
nets fit into rectangle.

The formulae for these two cases are:

1. 2a+ 2b ≤ h and b+ 2c ≤ w

2. a+ c ≤ h and 3b+ a+ c ≤ w

These two cases’ pictures were given in the problem statement, and both cases were covered in sample
testcases. It’s possible to generate all the nets in your program to prove the fact, but judges were expecting
teams to try most of the cases on paper ending up with two interesting ones.

Problem C. Connections
Author: Pavel Irzhavski
Statement and tests: Pavel Irzhavski

Total
time

0h 1h 2h 3h 4h 5h

127
765

Java Kotlin C++ Python Total
Accepted 3 0 124 0 127
Rejected 34 1 726 4 765

Total 37 1 850 4 892

Page 3 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

solution team att time size lang
Fastest Moscow IPT 1 2 20 1,725 C++
Shortest American U in CA 1 1 163 1,080 C++
Max atts. Grodno SU 23 264 2,443 C++

Let’s consider the cities as vertices and the roads as arcs in a directed graph G. Now we choose an arbitrary
city v.

Then we build a spanning arborescence (directed rooted tree) with root v (using BFS or DFS etc.). Further
we change the direction of each arc and build another arborescence with root v. The first arborescence
exists because each city is reachable from city v and the second one does because city v is reachable from
any other city.

Now it is easy to see that restoring the direction of the arcs of the second arborescence and uniting it with
the first arborescence we get a subgraph H of graph G with at most 2(n − 1) arcs. Also in subgraph H
it is possible both to go from city v to any other city and to get to city v from any other city. Therefore
it is possible to go from city u to city w for any cities u and w, since it is possible to go from city u to
city v and from city v to city w.

Problem D. Designing the Toy
Author: Maxim Akhmedov
Statement and tests: Maxim Akhmedov

Total
time

0h 1h 2h 3h 4h 5h

91
346

Java Kotlin C++ Python Total
Accepted 2 0 87 2 91
Rejected 6 0 328 12 346

Total 8 0 415 14 437

solution team att time size lang
Fastest SPb SU 1 3 66 3,578 C++
Shortest Tyumen SU 1 1 168 1,010 Python
Max atts. SPb ITMO U 4 25 275 1,567 C++

Let’s start with a necessary condition for the desired figure to exist. Let’s prove that if a > bc holds (or
any of the two symmetric inequalities), then it is impossible to construct such a figure.

For the sake of simplicity, denote the orthogonal projection areas onto the corresponding coordinate planes
as Sxy, Sxz and Syz, and the orthogonal projection lengths onto the corresponding coordinate axes as lx,
ly and lz.

Denote our figure as F . Note the following relation:

projOx(F) = projOx(projOxz(F))

This equality immediately implies that lx ≤ Sxz and, symmetrically, ly ≤ Syz.

Page 4 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

In the first case Sxz = 5, Syz = 4, Sxy = 13.
In the second case Sxz = 5, Syz = 4, Sxy = 6

On the other hand, the orthogonal projection projOxy(F) consists of the unit squares such that their
x-coordinates belong to the set of size lx and their y-coordinates belong to the set of size ly. Hence,
Sxy ≤ lxly.
Combining these inequalities, we immediately get that Sxy ≤ SxzSyz.
It turns out that the system of three inequalities that are obtained from Sxy ≤ SxzSyz by renaming
the coordinate axes is not only the necessary condition, but also a criterion. Suppose that Sxy is the
maximum of three orthogonal projection areas. We will now build a desired figure under the assumption
of Sxy ≤ SxzSyz. The figure will be effectively two-dimensional, i.e. all the voxels will have z-coordinate
equal to 0.

There are two essential cases: either Sxy is not smaller than Sxz + Syz − 1 or not. In the former case we
will draw an L-shaped corner ensuring that Sxz and Syz are taking the required values, and then fill the
interior of the corner with the remaining number of Sxy− (Sxz +Syz−1) voxels. In the latter case we will
“cut” the corner of the L-shaped figure, reducing the total number of voxels in the figure while keeping
Sxz and Syz. Refer to the pictures below for the details.

Problem E. Easy Quest
Author: Pavel Mavrin
Statement and tests: Pavel Mavrin

Total
time

0h 1h 2h 3h 4h 5h

235

561

Java Kotlin C++ Python Total
Accepted 12 2 210 11 235
Rejected 63 13 437 48 561

Total 75 15 647 59 796

solution team att time size lang
Fastest SPb ITMO U 1 1 5 1,431 C++
Shortest Altai STU 2 4 43 461 Python
Max atts. ADA U 2 11 231 1,157 Java

Let’s simulate the quest, remembering the current state of our inventory. For each creature:

• If the creature gives us an item, add this item into inventory.

• If we meet a unicorn, add special «joker» item into inventory. Later, we will decide, what item it
should become.

Page 5 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

• For an evil creature, check the inventory. If it contains required item, use it, otherwise use one of
the joker items. If we have neither required item nor joker items, then it’s impossible to defeat this
enemy, so output «No».

In the end, if there are still some joker items in the inventory, assign any valid item type (for example, 1)
to them.

Problem F. The Final Level
Author: Georgiy Korneev
Statement and tests: Pavel Kunyavsky

Total
time

0h 1h 2h 3h 4h 5h

25
113

Java Kotlin C++ Python Total
Accepted 0 0 25 0 25
Rejected 0 0 113 0 113

Total 0 0 138 0 138

solution team att time size lang
Fastest Vilnius U 1 2 69 2,840 C++
Shortest Belarusian SUIR 2 4 256 1,159 C++
Max atts. SPb SU 1 7 280 12,064 C++

First, reflect the plane in such a way, that a, b ≥ 0. Now place corners one by one, reducing the problem
to the same problem for smaller values of a and b. We will maintain the following invariant: either all cells
(x, y) such that x ≤ a are empty, or all cells (x, y) such that y ≤ b are empty.

Case 1. If a < n and b < n, then one corner is enough:

if cells x ≤ a are empty, or if cells y ≤ b are empty.

Case 2. If a ≥ n and b < n, then reduce problem to (a− n, 0):

Case 3. If a < n and b ≥ n, then reduce problem to (0, b− n) in the same way.

Case 4. If a ≥ n, b ≥ n, and a ≥ b, then reduce problem to (a− n, b− n+ 1):

Page 6 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

Case 5. If a ≥ n, b ≥ n, and a < b, then reduce problem to (a− n+ 1, b− n) in the same way.

It’s easy to show that the lower bound for the number of corners is max(b anc + 1, b bnc + 1, b a+b
2n−1c + 1),

and all reductions maintain this lower bound.

Problem G. The Great Wall
Author: Vitaly Aksenov
Statement and tests: Vitaly Aksenov

Total
time

0h 1h 2h 3h 4h 5h

3
26

Java Kotlin C++ Python Total
Accepted 0 0 3 0 3
Rejected 2 0 24 0 26

Total 2 0 27 0 29

solution team att time size lang
Fastest Moscow IPT 1 2 216 4,202 C++
Shortest Belarusian SU 4 5 237 3,433 C++
Max atts. Belarusian SU 4 5 237 3,433 C++

As a first step, we replace bi and ci by bi − ai and ci − ai and set all ai to zero. Suppose, for a moment,
that we have a function of s that returns the number of walls with strength less than s. Then, using the
binary search and this function we can find the strength of the k-th wall.

Now, we describe how to build such a function of s. For that we need a data structure D that supports
three operations in logarithmic time: insert, remove and how many elements are less than given k. This
could be, for example, cartesian trees or, simply, sorted_set in C++.

At first, we explain how to calculate the number of walls with strength less than s and for which two
segments do not intersect, that is, none of ci are used. We move the right segment to the right and maintain
a data structureD that contains all the segments on the left that do not intersect the current right segment.
We calculate the prefix sums pbi = b1+ . . .+bi. Suppose that the right segment is [y, y+r−1]. We simply
make a query to D: the number of elements less than s − (by + . . . + by+r−1) = s − (pby+r−1 − pby−1).
Then, we move the segment to the right and add a new segment [y − r + 1, y] to D (insert pby − pby−r).
Summing up the answers by D on the queries we get the desired number of walls.

Page 7 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

Secondly, we explain how to calculate the number of walls with strength less than s and for which two
segments intersect. Now, we make a trick: we represent the strength of the wall with two intersecting

segments [x, x+ r− 1] and [y, y+ r− 1] as gx + fy. We argue that gx =
x−1∑
i=1

(ci − 2bi) +
x+r−1∑
i=x

(ci − bi) and

fy =
y−1∑
i=1

(2bi − ci) +
y+r−1∑
i=y

bi satisfy us. All fy and gx could be calculated in linear time.

fy = by+r−1 + . . . + bx+r+bx+r−1 + . . . +by +(2by−1 − cy−1) + . . . +(2bx − cx) +(2bx−1 − cx−1) + . . . +(2b1 − c1)

gx = (cx+r−1 − bx+r−1) + . . . +(cy − by) +(cy−1 − by − 1) + . . . +(cx − bx) +(cx−1 − 2bx−1) + . . . +(c1 − 2b1)

by+r−1 + . . . + bx+r+cx+r−1 + . . . +cy +by−1 + . . . +bx

Wemove the right segment to the right and maintain a data structureD that contains gx for all intersecting
segments on the left. Suppose that the right segment is [y, y + r − 1]. We simply make a query to D:
the number of elements less than s − fy. Then, we move the segment to the right, add a new segment
[y, y + r − 1] to D (insert gy) and remove a segment [y − r + 1, y] from D (remove gy−r+1, [y − r + 1, y]
does not intersect with [y + 1, y + r]). Summing up the answers by D on the queries we get the desired
number of walls.

Problem H. Hack
Author: Petr Mitrichev
Statement and tests: Petr Mitrichev

Total
time

0h 1h 2h 3h 4h 5h

1

Java Kotlin C++ Python Total
Accepted 0 0 0 0 0
Rejected 0 0 1 0 1

Total 0 0 1 0 1

Let us start with sending 30 000 random queries ai and getting the computation time for each of them
back. We can then subtract the time to repeatedly square the query 60 times from each computation
time, as the repeated squaring (line 7 in the program listing in the problem statement) does not depend
on d. The remainder would be the total time of multiplications in line 5 of the program.

Then we will find the number d bit by bit, from the least significant to the most significant. First, the
0-th (parity) bit is always equal to 1, since the number d is coprime with the even number m.

Now consider the 1-st bit. If it is equal to 1, then line 5 will execute for it, and we will multiply ai by a2i
(here and below, we will omit (mod n) part — it is implied for all powers of ai). If it is equal to 0, then
we will never multiply ai by a2i . Now, we know the time of multiplication of ai by a2i , and total time of
all multiplications in line 5 — and we need to determine if the former is a part of the latter.

Here comes the key idea: for numbers ai such that ai and/or a2i have less bits than usual, multiplying ai
by a2i takes less time than usual. For such values ai the total time is also likely to be a bit less than usual
if it includes multiplying ai by a2i , as one of the summands is smaller than usual.

Of course, since it’s just one of the summands, is likely is the strongest thing we can say. For each particular
ai, the overall time might still end up being higher than usual just because of randomness. However, if

Page 8 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

we look at all 30 000 queries together, statistical methods can tell us the answer with extremely high
probability.

More precisely, let us look at sample covariance of the time pi it takes to multiply ai by a2i , and the total
time qi of all multiplications in line 5 for this ai.

cov(pi, qi) =

∑
pi · qi
k

−
∑
pi
k
·
∑
qi
k

(in our case k = 30 000)

In case the 1-st bit is 1, qi = pi+ ri,1+ ri,2+ ..., where ri,j are the times of other multiplications in line 5.
Note that the arguments to other multiplications will be some other powers of ai, and not ai or a2i , so we
can expect cov(pi, ri,j) to be around zero. Since covariance is linear in each argument, cov(pi, qi) should
be roughly equal to cov(pi, pi) in this case.

In case the 1-st bit is 0, qi = ti + ri,1 + ri,2 + ..., where ti is the time of the next multiplication in line
5, and ri,j correspond to the following multiplications. As above, we can expect cov(pi, ri,j) to be around
zero, but not so for cov(pi, ti) since ti is the time of multiplying ai by some other power aki , so pi and ti
share one of the arguments (ai), and thus the covariance should also be positive. Altogther we can expect
cov(pi, qi) to be roughly equal to cov(pi, t′i), where t

′
i is the time of mulplication of ai by a random number

between 0 and n− 1. In one of the reference solutions, we used the next square as an approximation for
such random number (in this case a4i).

We’re going to do the following to determine the 1-st bit: compute cov(pi, qi), cov(pi, pi) and cov(pi, t′i).
If the first number is closer to the second than to the third one, then the 1-st bit is 1, otherwise it is 0.

Having determined the 1-st bit, we can continue with the 2-nd, since now we know both arguments to
the possible multiplication corresponding to it: it’s either a or a3 being multiplied by a4. We can apply
the same covariance computation to determine the 2-nd bit now, and so on until we know the entire d.

That completes the solution to the problem, but one might wonder: how certain are we that it works?
What is the exact meaning behind extremely high probability, roughly and is likely in the above text?

We do not claim a completely formal argument for that, but we do have one modulo a reasonable
assumption. More precisely, we will assume that when u and s are different numbers between 1 and
m− 1, the numbers bits(aui) and bits(a

s
i) to be independent random variables that are distributed in the

same way as just bits(x), where x is a random number between 0 and n − 1. This assumption does not
hold precisely, but it is a very reasonable approximation.

Now let’s denote as ξi,j,l a family of independent random variables, each distributed as
bits(x) − E(bits(x)) — in other words as bits(x), but shifted to have an expectation of 0. We denote
the index of the query as i, the index of the multiplication within the query as j, and enumerate different
numbers used in one multiplication using l. In case the corresponding bit of d is 1 (the case of this bit
being 0 is handled similarly), the numbers we’re computing can be approximately modeled as:

cov(pi, qi) =

∑
i

∑
j ξi,1,1 · ξi,1,2 · ξi,j,1 · ξi,j,2

k

cov(pi, pi) =

∑
i ξ

2
i,1,1 · ξ2i,1,2
k

cov(pi, t
′
i) =

∑
i ξ

2
i,1,1 · ξi,1,2 · ξi,1,3

k

(where j iterates over 1 bits of d, in other words the upper bound on j is 60)

And then compute the differences between the first one and the other two:

Page 9 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

cov(pi, pi)− cov(pi, qi) = −
∑

i

∑
j>=2 ξi,1,1 · ξi,1,2 · ξi,j,1 · ξi,j,2

k

cov(pi, qi)− cov(pi, t′i) =
∑

i (ξi,1,1 · ξi,1,2 · (−ξi,1,1 · ξi,1,3 +
∑

j ξi,j,1 · ξi,j,2))
k

And our solution will make a correct decision if the first difference is smaller than the second.

Both those differences, and the difference between them, are expressions of the form “mean of k copies
of independent equally distributed random variables”, and the Central Limit Theorem tells us that such
expressions are almost normally distributed for large values of k. So in order to determine the probability
of the first number being greater than the second number we just need to find the mean and variance of
their difference, and use the normal distribution quantiles. Moreover, we can instead find the mean and
variance of the difference for k = 1, and then just divide the variance by k (or the standard deviation by√
k).

Those mean and variance are the easiest to estimate empirically. Doing that shows that depending on
n in the worst case of j ≤ 60 the mean is between -4 and -6, the standard deviation is between 60 and
80, and the ratio of mean to standard deviation is at least 0.05. After adjusting for the averaging of k
experiments, the ratio increases

√
k times to around 8. So our algorithm making a wrong decision would

amount to a normal distribution sampling above 8 standard deviations, which happens with probability
around 10−15. Even accounting for 30 tests and 60 bits per test, the overall probability of error is still
within 2 · 10−12, which is a virtual impossibility.

The reasoning above relied on a few assumptions and approximations, but they were not so radical, so the
probability of error should be around the number we computed. In more concrete terms, we’ve ran this
solution on 10000 testcases, and the correct difference was always at least 2.5x smaller than the incorrect
one.

Problem I. Interactive Sort
Author: Borys Minaiev
Statement and tests: Borys Minaiev

Total
time

0h 1h 2h 3h 4h 5h

20
143

Java Kotlin C++ Python Total
Accepted 1 0 19 0 20
Rejected 1 0 142 0 143

Total 2 0 161 0 163

solution team att time size lang
Fastest Belarusian SU 5 3 103 3,336 C++
Shortest Kazakh-British TU 1 2 118 1,631 C++
Max atts. Ulyanovsk STU 7 163 2,200 C++

Let’s iterate over all even numbers in a random order and split odd ones using them. First, we choose
some even number 2x and compare it with all odd numbers. This splits odd numbers into two groups —

Page 10 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

one with all numbers smaller than 2x and group with numbers larger than 2x. This also lets us know the
exact value of current even number (because we know the number of odd numbers less than it).

After iterating over k even numbers all odd numbers will be split into k + 1 groups. We can split odd
numbers by k+ 1-th even number with less than n comparisons. We can do a binary search on groups in
O(log k) operations comparing 2x with arbitrary element from that group. In the end, we are left with
two groups. Split all numbers from those two groups into three groups and continue the process.

It could be proven that total number of operations is O(n log n).

Problem J. Journey from Petersburg to Moscow
Author: Gleb Evstropov
Statement and tests: Gleb Evstropov

Total
time

0h 1h 2h 3h 4h 5h

3
31

Java Kotlin C++ Python Total
Accepted 0 0 3 0 3
Rejected 0 0 31 0 31

Total 0 0 34 0 34

solution team att time size lang
Fastest Moscow SU 1 3 115 1,866 C++
Shortest Moscow SU 1 3 115 1,866 C++
Max atts. Moscow SU 1 3 115 1,866 C++

First we are going to consider the case when optimal answer consists of less than k edges. We claim that
this means the answer is the shortest path from vertex 1 to vertex n. Indeed, for any path of no more than
k edges its k-sum weight is equal to its weight in conventional definition, while for any path consisting of
more than k edges its k-sum weight is strictly smaller than conventional one.

Now we consider only paths of at least k edges. For the purpose of simplicity we suppose no two edges
have equal weights. Equal weights can be resolved by comparing such edges by their indices. Consider the
optimal path in k-sum metric. Let x be the k-th maximum weight along this path. Now we use this value
of x as a cutoff: find connected components of vertices that can be reached from each other by edges of
weights less than x, then consider only edges greater than or equal to x. In this graph find the shortest
path from component containing vertex 1 to component containing vertex n that has length exactly k.
This can be done in O(mk) time for a fixed cutoff x.

The above procedure will find the optimal answer, if the value of x is set to the weight of k-th maximum
edge in it. To find the proper value of x we can simply try all possible weights. The complexity of such
solution is O(m2k).

The general idea of a model solution is to tune weights in such a way to make the path that is optimal in
k-sum terms optimal in conventional distance. Define Gx as the graph that has the same set of vertices
and edges but the weight w(e) of edge e ∈ E(G) is replaced with value wx(e) = max(0, w(e) − x), i.e.
edges that are below cutoff x are replaced with zero-weight edges, while edges greater than x have their
weight decreased by x. Let d(x) be the shortest path from 1 to n in graph Gx. Consider f(x) = d(x)+x ·k.
We claim that shortest path in k-sum distance ksumSP (G) = min

x≥0
f(x).

Page 11 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

First we claim that ksumSP (G) ≥ f(x) for any x ≥ 0. Consder any path p, let c1 ≥ c2 ≥ c3 ≥ . . . ≥ cl
be individual weights of its edges. If l ≤ k the claim is obviously true for any x ≥ 0. Consider the
function dp(x) — length of this particular path depending on the value of x increasing from 0 to infinity
(fp(x) = dp(x) + x · k):

• Let x < cl. Inrecemnting x by 1 will inrease fp(x) by l − k.

• While ci+1 ≤ x < ci, where i ≥ k + 1 incrementing x by 1 change fp(x) by i− x > 0.

• For ck+1 ≤ x < ck, fp(x+ 1)− fp(x) = 0. Moreover,

fp(x) =
l∑

i=1

max(0, ci − x) + x · k =
k∑

i=1

(ci − x) + x · k =
k∑

i=1

ci

, that is the length of this path in k-sum terms.

• For ci+1 ≤ x < ci, where i < k the difference fp(x+ 1)− fp(x) is equal to k − i.

In other words, for any fixed path its value of function fp(x) goes down, reaches minimum value equal
to the sum of k maximum edges at ck+1, stays at this level for x ∈ [ck+1; ck] and then starts to increase.
Thus as f(x) is the minimum of fp(x) among all individual paths it never exceeds the legnth of shortest
path in k-sum metric.

The last observation to make is that minimum of f(x) is indeed equal to ksumSP (G). Consder any path p,
let c1 ≥ c2 ≥ c3 ≥ . . . ≥ cl be individual weights of its edges. If l ≤ k then for x = 0, fp(0) = ksumSP (G).
Otherwise, consider x = ck. The behaviour of fp(x) provided above means that fp(ck) is equal to k-sum
length of this particular path, thus is equal to the shortest k-sum path in G.

The resulting solution is: try all possible w(e) as values of x, build Gx and compute d(x) using Dijkstras
algorithm implementation with binary heap. The overall time complexity is O(m2 log n).

Problem K. Knapsack Cryptosystem
Author: Mikhail Dvorkin
Statement and tests: Mikhail Dvorkin

Total
time

0h 1h 2h 3h 4h 5h

366

Java Kotlin C++ Python Total
Accepted 0 0 3 0 3
Rejected 1 0 48 17 66

Total 1 0 51 17 69

solution team att time size lang
Fastest SPb SU 1 10 171 12,455 C++
Shortest Moscow SU 1 15 264 2,925 C++
Max atts. Moscow SU 1 15 264 2,925 C++

Page 12 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

If n ≤ 2
3 log2 q, we solve the knapsack problem instance with an exponential algorithm. We divide the

n given numbers into two sets of size n
2 , and for each set we calculate a sorted array of sums of all its

subsets. Then these two arrays of size O(2n/2) can be traversed with a linear search: one pointer moves
by one position in one array, while another pointer moves in the other array searching for the desired sum
s. The time is O(2n/2) = O(2

1
3
log2 q) = O(3

√
q).

If n ≥ 2
3 log2 q, there is an algorithm that uses the nature of the sequence {bi} to break the cryptosystem.

(Note that the previous paragraph works for any sequence {bi}).
Consider the original Alice’s sequence {ai}. Note that a2 > a1; a3 > a1+a2 > 2a1; a4 > a1+a2+a3 > 4a1;
and so on, and finally an > 2n−2a1. But q is greater than an (since it’s greater than the sum of all ai).
Therefore, a1 is less that q/2n−2, call this number t.

Since Alice’s value r is odd, b1 has the same number of trailing zeroes in binary system as a1, call that
number z; we know z from the input data. We iterate over all possible values for a1 in the range [1, t]
which have exactly z trailing zeroes. For each candidate, we suppose that multiplication of this candidate
by r resulted in b1. This gives us the knowledge about all bits of r except for the upper z bits. We examine
all possible masks in the z upper bits.

This process iterates over all possilbe values of r. For each possible value of r, we calculate {ai} from {bi},
and check whether this {ai} is a superincreasing sequence, in which case we use greedy algorithm from
the largest value to the lowest in order to decompose the given sum s.

We iterate over O(t/2z) possible candidates, for each of which we iterate over 2z possible masks in the
upper bits. Therefore, the time is O(t) = O(q/2n−2) = O(2log2 q−

2
3
log2 q) = O(3

√
q).

(Formally, for each possible value of r, we need O(n) time to calculate and process the sequence ai,
but, in reality, we will calculate O(1) first elements on average before we learn that this sequence is not
superincreasing.)

The asymptotic time of this algorithm is O(2min(n/2,log2 q−n)) = O(3
√
q).

Problem L. Laminar Family
Author: Maxim Akhmedov
Statement and tests: Maxim Akhmedov

Total
time

0h 1h 2h 3h 4h 5h

23
129

Java Kotlin C++ Python Total
Accepted 0 0 23 0 23
Rejected 3 0 126 0 129

Total 3 0 149 0 152

solution team att time size lang
Fastest Moscow SU 1 1 94 2,824 C++
Shortest Moscow SU 1 1 94 2,824 C++
Max atts. Belarusian SU 2 12 291 3,770 C++

Consider the set of edges that are covered with the given paths and their endpoints. It is easy to see
that no vertex may be adjacent to more than two covered edges, otherwise there are at least two paths

Page 13 of 14

ACM ICPC 2017–2018, NEERC – Northern Eurasia Finals
St. Petersburg – Barnaul – Tbilisi – Almaty, December 3, 2017

passing through this vertex that are not subsets of each other (when we treat path as a set of vertices)
that is not allowed by the definition of a laminar family.

Thus, if the given family is laminar, all the covered edges consist of multiple disjoint simple tree paths.
Finally, let’s notice that the problem restricted to some of these simple paths is similar to checking if
the given bracket sequence is correct: sort all the path endpoints along the path. Filter the single vertex
paths, after that each path endpoint becomes either opening or closing.

If there is a vertex that contains both the opening and the closing endpoints, the set family is not laminar.
Otherwise, sort the endpoints located at the same vertex in the descending order of path length if the
vertex contains opening endpoints, and in the ascending order otherwise. Iterate over all the endpoints
in the obtained order, all currently opened endpoints in the stack with a standard correctness-checking
procedure for bracket sequence. By running this procedure for all the connected components of covered
edges, we solve the problem.

The final question is to find all the covered edges. It can be done by making the tree rooted, expressing
each path as a union of two vertical paths (that involves finding the highest point of each path with using
an LCA query), and then running a DFS. But there is an easier and shorter trick for doing that: we
can assign each path an random 64-bit mask using the unsigned int64 data type, assign each vertex the
xor value of all paths that start in this particular vertex and then calculate for each edge the xor sum
of all vertices in any of its subtrees. If the edge is not covered, then this xor-sum will be definitely zero,
otherwise it will be non-zero with a probability of 1− 2−64 that is indistinguishable from 1.

Page 14 of 14

