
ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem A. ASCII Art
Input file: ascii.in
Output file: ascii.out

ASCII art is an art of creating pictures with a grid of ASCII characters. There are many styles of ASCII
art, but we are interested in the most primitive one, where just an overall character density is used to
represent differently shaded areas of the picture.

You should write a proof-of-concept program that renders a filled closed polygon with a rectangular grid
of ASCII characters. The whole process is explained in detail below.

Let OXY be a Cartesian coordinate system with OX pointing to the right and OY pointing up. Drawing
canvas is bounded with (0, 0) – (w, h) rectangle. Pixels on the canvas are (x, y) – (x + 1, y + 1) squares
where x and y are integers such that 0 ≤ x < w and 0 ≤ y < h. A filled closed polygon without self-
intersections and self-touchings (but not necessarily convex) is drawn on the canvas. Pixels of the canvas
become partially filled during the process. Each pixel is represented by an ASCII character depending
on the percentage of its filled area according to the following table:

Pixel percentage area filled Character name Glyph ASCII code
From 0% inclusive to 25% exclusive Full stop . 46
From 25% inclusive to 50% exclusive Plus sign + 43
From 50% inclusive to 75% exclusive Small letter o o 111
From 75% inclusive to 100% exclusive Dollar sign $ 36
100% Number sign # 35

The resulting ASCII characters for all pixels are printed top-to-bottom and left-to-right to get a visual
representation of the drawing.

x

y

Input
The first line of the input file contains integers n, w, and h (3 ≤ n ≤ 100, 1 ≤ w, h ≤ 100) — number
of vertices in the polygon, width and height of the canvas respectively. The following n lines contain
coordinates of the polygon vertices in clockwise order. Point i is described by two integers xi and yi

(0 ≤ xi ≤ w, 0 ≤ yi ≤ h).

Output
Write to the output file h lines with w ASCII characters each that represent ASCII art drawing of the
given polygon.

Sample input and output
ascii.in ascii.out

6 8 7
7 6
1 0
1 7
5 5
2 4
2 3

.$+.....

.##$+...

.#$oo+..

.#+$o...

.##o....

.#o.....

.o......

Page 1 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem B. Billing Tables

Input file: billing.in
Output file: billing.out

In the world of telecommunications phone calls to different phone numbers have to be charged using
different rate or different billing plan. International Carrier of Phone Communications (ICPC) has an
antique billing table that determines which phone call has to be charged using which billing plan.

Each international phone number has 11 digits. The billing table has n lines. Each line specifies a range of
prefixes of phone numbers like “7919 - 921”. This specification means that all phone numbers starting
from 7919, 7920, and 7921 match this line. A billing plan name is specified for each prefix. To determine
a billing plan for a call, the table is scanned from top to bottom and the first matching line determines
the billing plan. If no match is found, the phone number is invalid and no billing plan is needed. A
special billing plan named “invalid” (without quotes) is used as an alternative way to define invalid
phone numbers. Some billing plans are used for quite differently looking phone numbers and their names
may be specified on different lines in different places of the table.

ICPC’s billing table is old and contains many entries. Some of those entries may not be even used
anymore. It is very hard to figure out which phone numbers each billing plan is actually used for. The
ICPC’s management has reached a decision to transform this billing table into a more legible format. In
this new format table consists of the lexicographically ordered list of simple prefixes (without the “-”
range feature of the old format) with a billing plan name for each prefix. No prefix of this new billing
table should be a prefix of any other prefix from the table. Thus, a simple dictionary lookup (binary
search, for example) will be sufficient to figure out a billing plan for a given phone number. Finding all
phone numbers for a given billing plan will also become quite a simple task. The number of lines in the
new billing table should be minimized. Billing plan named “invalid” should not be present in the new
billing table at all, since invalid phone numbers will be denoted by absence of the corresponding prefix
in the new billing table.

Input
The first line of the input file contains a single integer number n (1 ≤ n ≤ 100) — the number of lines
in the old billing table. The following n lines describe the old billing table with one rule on a line. Each
rule contains four tokens separated by spaces — prefix A, minus sign (“-”), prefix B, and billing plan
name. Prefixes contain from 1 to 11 digits each, and the billing plan name contains from 1 to 20 lower
case letters.

Further, let us denote with |A| the number of digits in the prefix A. It is true that 1 ≤ |B| ≤ |A| ≤ 11.
Moreover, last |B| digits of prefix A form a string that is lexicographically equal or precedes B.

Such pair of prefixes A and B matches all phone numbers with the first |A| − |B| digits matching the
first digits of A and with the following |B| digits being lexicographically between the last |B| digits of A
and B (inclusive).

Output
Write to the output file a single integer number k — the minimal number of lines that the new table
should contain to describe the given old billing table. Then write k lines with the lexicographically
ordered new billing table. Write two tokens separated by a space on each line — the prefix and the
billing plan name. Note, that the prefix in the new billing table shall contain at least one digit.

If all phone numbers are invalid (every phone number has no matching line or matches line with billing
plan “invalid”) then the output file should contain just number zero.

Page 2 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Sample input and output

billing.in billing.out
8
7919 - 921 cell
7921800 - 999 priv
1 - 1 usa
760 - 9 rsv
7928 - 29 rsv
7600 - 7899 spec
73 - 77 invalid
7 - 7 cis

35
1 usa
70 cis
71 cis
72 cis
76 rsv
77 spec
78 spec
790 cis
7910 cis
7911 cis
7912 cis
7913 cis
7914 cis
7915 cis
7916 cis
7917 cis
7918 cis
7919 cell
7920 cell
7921 cell
7922 cis
7923 cis
7924 cis
7925 cis
7926 cis
7927 cis
7928 rsv
7929 rsv
793 cis
794 cis
795 cis
796 cis
797 cis
798 cis
799 cis

Page 3 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem C. Cellular Automaton
Input file: cell.in
Output file: cell.out

A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number
of discrete time steps according to a set of rules that describe the new state of a cell based on the states
of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the
automaton of order n are numbered from 1 to n.

The order of the cell is the number of different values it may contain. Usually, values of a cell of order
m are considered to be integer numbers from 0 to m− 1.

One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed.
In this problem we examine the special kind of cellular automaton — circular cellular automaton of order
n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.

A distance between cells i and j in n,m-automaton is defined as min(|i− j|, n−|i− j|). A d-environment
of a cell is the set of cells at a distance not greater than d.

On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after
d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.

The following picture shows 1-step of the 5,3-automaton.

1
1

2 2
2
3

14

2
5

2
1

2 2
2
3

24

1
5

The problem is to calculate the state of the n,m-automaton after k d-steps.

Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500,
1 ≤ m ≤ 1 000 000, 0 ≤ d < n

2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers
from 0 to m− 1 — initial values of the automaton’s cells.

Output
Output the values of the n,m-automaton’s cells after k d-steps.

Sample input and output

cell.in cell.out
5 3 1 1
1 2 2 1 2

2 2 2 2 1

5 3 1 10
1 2 2 1 2

2 0 0 2 2

Page 4 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem D. Driving Directions

Input file: driving.in
Output file: driving.out

Contrary to the popular belief, alien flying saucers cannot fly arbitrarily around our planet Earth. Their
touch down and take off maneuvers are extremely energy consuming, so they carefully plan their mission
to Earth to touch down in one particular place, then hover above the ground carrying out their mission,
then take off. It was all so easy when human civilization was in its infancy, since flying saucers can
hover above all the trees and building, and their shortest path from one mission point to the other was
usually a simple straight line — the most efficient way to travel. However, modern cities have so tall
skyscrapers that flying saucers cannot hover above them and the task of navigating modern city became
quite a complex one. You were hired by an alien spy to write a piece of software that will ultimately give
flying saucers driving directions throughout the city. As your first assignment (to prove your worth to
your alien masters) you should write a program that computes the shortest distance for a flying saucer
from one point to another. This program will be used by aliens as an aid in planning of mission energy
requirements.

The problem is simplified by several facts. First of all, since flying saucer can hover above most of the
buildings, you are only concerned with locations of skyscrapers. Second, the problem is actually two-
dimensional — you can look at everything “from above” and pretend that all objects are situated on
OXY Cartesian plane. Flying saucer is represented by a circle of radius r, and since modern cities with
skyscrapers tend to be regular, every skyscraper is represented with a rectangle whose sides are parallel
to OX and OY axes.

By definition, the location of flying saucer is the location of its center, and the length of the path it
travels is the length of the path its center travels. During its mission flying saucer can touch skyscrapers
but it cannot intersect them.

At the first picture a flying saucer of r = 1 has to get from point A to point B. The straight dashed
line would have been the shortest path if not for skyscraper 1. The shortest way to avoid skyscraper 1
is going around its top right corner, but skyscraper 2 is too close to fly there. Thus, the answer is to go
around the bottom left corner of skyscraper 1 for a total path length of 10.570796.

In the second picture it is impossible for a flying saucer of r = 2 to get from point A to point B, since
all skyscrapers are too close to fly in between them.

In the third picture flying saucer of r = 1 has to fly in a slalom-like way around two skyscrapers in order
to achieve the shortest path of length 11.652892 between A and B.

x

y

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1

2

3
A

B

x

y

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1

2

3

4
A

B

x

y

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

1

2
A B

Input
The first line of the input file contains integer numbers r and n (1 ≤ r ≤ 100, 0 ≤ n ≤ 30), where r is
the radius of the flying saucer, and n is the number of skyscrapers. The next line contains four integer

Page 5 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

numbers xA, yA, xB, and yB (−1000 ≤ xA, yA, xB, yB ≤ 1000), where (xA, yA) are the coordinates of
the starting point of the flying saucer’s mission and (xB, yB) are the coordinates of its finishing point.

The following n lines describe skyscrapers. Each skyscraper is represented by four integer numbers x1,
y1, x2, and y2 (−1000 ≤ x1, y1, x2, y2 ≤ 1000, x1 < x2, y1 < y2) — coordinates of the corners of the
corresponding rectangle.

Skyscrapers neither intersect nor touch each other. Starting and finishing points of the flying saucer’s
mission are valid locations for flying saucer, that is, it does not intersect any skyscraper in those points,
but may touch some of them.

Output
Write to the output file text “no solution” (without quotes) if the flying saucer cannot reach its finishing
point from the starting one. Otherwise, write to the output file a single number — the shortest distance
that the flying saucer needs to travel to get from the starting point to the finishing point. Answer has to
be precise to at least 6 digits after the decimal point.

Sample input and output

driving.in driving.out
1 3
2 7 7 1
3 2 6 4
7 5 9 8
1 8 5 9

10.570796

2 4
0 0 5 6
8 3 10 6
5 9 9 10
1 4 2 8
3 1 5 3

no solution

1 2
0 5 10 5
2 2 4 5
6 5 8 8

11.652892

Page 6 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem E. Exchange

Input file: exchange.in
Output file: exchange.out

You are taking part in a large project to automate operations for Northeastern Exchange of Resources
and Commodities (NEERC). Different resources and commodities are traded on this exchange via public
auction. Each resource or commodity is traded independently of the others and your task is to write a
core engine for this exchange — its order book. There is a separate instance of an order book for each
traded resource or commodity and it is not your problem to get the correct orders into order books.
The order book instance you will be writing is going to receive the appropriate orders from the rest of
exchange system.

Order book receives a stream of messages. Messages are orders and requests to cancel previously issued
orders. Orders that were not cancelled are called active. There are orders to buy and orders to sell. Each
order to buy or to sell has a positive size and a positive price. Order book maintains a list of active
orders and generates quotes and trades. Active order to buy at the highest price is the best buy order
and its price is called bid price. Active order to sell at the lowest price is the best sell order and its price
is called ask price. Ask price is always lower than bid price, that is, buyers are willing to pay less than
sellers want to receive in return.

A current quote from the order book contains current bid size, bid price, ask size, and ask price. Here
bid and ask sizes are sums of the the sizes of all active orders with the current bid price and the current
ask price correspondingly.

A trade records information about transaction between buyer and seller. Each trade has size and price.

If an order to buy arrives to the order book at a price greater or equal to the current ask price, then the
corresponding orders are matched and trade happens — buyer and seller reached agreement on a price.
Vice versa, if an order to sell arrives to the order book at a price less or equal to the current bid price,
then trade happens, too. For the purpose of order matching, order book works like a FIFO queue for
orders with the same price (read further for details).

When an order to buy arrives to the order book at a price greater or equal to the current ask price it is
not immediately entered into the order book. First, a number of trades is generated, possibly reducing
the size of incoming order. Trade is generated between incoming buy order and the best order to sell.
If there are multiple best orders (at the ask price), then the order that entered the order book first is
chosen. Trade is generated at the current ask price with the size of the trade being equal to the smaller
of the sizes of two matching orders. Sizes of both matching orders are reduced by the size of the trade.
If that reduces the size of sell order to zero, then it becomes inactive and is removed from the order
book. If the size of incoming buy order becomes zero, then the process is over — incoming order becomes
inactive. If the size of incoming buy order is still positive and there is another sell order to match with,
then the process continues generating further trades at the new ask price (ask price can increase as sell
orders are traded against and become inactive). If there is no sell order to match with (current ask price
became greater than incoming buy order price), then incoming buy order is added to the order book with
its remaining size.

For incoming sell order everything works similarly – it is matched with buy orders from the order book
and trades are generated on bid price.

On incoming cancel request the corresponding order is simply removed from the order book and becomes
inactive. Note, that by the time of the cancel request the quantity of the corresponding order might
have been already partially reduced or the order might have become inactive. Requests to cancel inactive
order do not change anything in the order book.

On every incoming message the order book has to generate all trades it causes and the current quote
(bid size, bid price, ask size, ask price) after processing of the corresponding message, even when nothing
has changed in the order book as a result of this message. Thus, the number of quotes the order book

Page 7 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

generates is always equal to the number of incoming messages.

Input
The first line of the input file contains a single integer number n (1 ≤ n ≤ 10 000) — the number of
incoming messages that the order book has to process. The following n lines contain messages. Each line
starts with a word describing the message type — BUY, SELL, or CANCEL followed after a space by the
message parameters.

BUY and SELL denote an order to buy or to sell correspondingly, and are followed by two integers q and p
(1 ≤ q ≤ 99 999, 1 ≤ p ≤ 99 999) — order size and price. CANCEL denotes a request to cancel previously
issued order. It is followed by a single integer i which is the number of the message with some preceding
order to buy or to sell (messages are numbered from 1 to n).

Output
Write to the output file a stream of quotes and trades that the incoming messages generate. For every
trade write TRADE followed after space by the trade size and price. For every quote write QUOTE followed
after space by the quote bid size, bid price, minus sign (“-”), ask size, ask price (all separated by spaces).

There is a special case when there are no active orders to buy or to sell in the order book (bid and/or ask
are not defined). This case is treated as follows. If there is no active order to buy, then it is assumed that
bid size is zero and bid price is zero. If there is no active order to sell, then it is assumed that ask size
is zero and ask price is 99 999. Note, that zero is not a legal price, but 99 999 is a legal price. Recipient
of quote messages distinguishes actual 99 999 ask price from the special case of absent orders to sell by
looking at its ask size.

See example for further clarification.

Sample input and output

exchange.in exchange.out
11
BUY 100 35
CANCEL 1
BUY 100 34
SELL 150 36
SELL 300 37
SELL 100 36
BUY 100 38
CANCEL 4
CANCEL 7
BUY 200 32
SELL 500 30

QUOTE 100 35 - 0 99999
QUOTE 0 0 - 0 99999
QUOTE 100 34 - 0 99999
QUOTE 100 34 - 150 36
QUOTE 100 34 - 150 36
QUOTE 100 34 - 250 36
TRADE 100 36
QUOTE 100 34 - 150 36
QUOTE 100 34 - 100 36
QUOTE 100 34 - 100 36
QUOTE 100 34 - 100 36
TRADE 100 34
TRADE 200 32
QUOTE 0 0 - 200 30

Page 8 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem F. Fool’s Game
Input file: fool.in
Output file: fool.out

A card game, often called “Fool’s Game”, is quite popular in Russia. We will describe a game for two
players. A standard deck of 36 cards is used. One suit is declared to be a trump.

A game consists of rounds. Before the round each player has several cards, one of the players is starting,
the other one is covering. The starting player starts by laying one or several cards of the same rank down
on the table. The number of cards must not exceed the number of cards the covering player has. The
covering player must in turn cover all the cards with some of her cards, laying them on the table above
the uncovered cards. A card can cover another if one of the following is true:

• it has the same suit and higher rank (ranks are ordered as usually: 6, 7, 8, 9, 10, J, Q, K, A);
• it is a trump and the card to cover is not a trump (a trump can only be covered by a higher trump).

After the cards on the table are all covered, the starting player can toss some more cards to be covered.
The rank of each card tossed must be among the ranks of the cards already on the table at the moment.
Now the newly added cards must be covered by the covering player, after that the starting player can
toss more cards, and so on. The starting player cannot toss more cards than the covering player has at
the moment.

The round ends when either the covering player cannot or does not want to cover all uncovered cards on
the table, or when the starting player cannot or does not want to toss more cards.

In the first case, when the covering player declares that she does not want to cover all uncovered cards
on the table, the starting player is given a chance to toss in more cards. The ranks of the cards tossed
must be among the ranks of the cards already on the table. The number of uncovered cards on the table
cannot exceed the number of cards that the covering player has at the moment. After that, the covering
player loses the round and takes all the cards from the table, adding them to her cards. Starting player
keeps her starting role and moves again in the next round.

In the second case, when all cards on the table are covered and the starting player cannot or does not
want to toss more cards, the covering player wins the round and the cards on the table are removed from
the game. The players’ roles for the next round are swapped: the covering player becomes the starting
one and vice versa.

If, after the end of the round, one of the players has no cards, and the other one has one or more cards,
then the player with no cards wins the game. If both players have no cards, then the player who was
starting in the last round wins the game.

Given the trump suit and the cards the players initially have, find out who wins the game if both play
optimally. Both players have full information about cards in the game.

Input
The first line of the input file contains n1 and n2 — the number of cards that each of the players has in
the beginning of the round (1 ≤ n1, n2 ≤ 6), and the trump suit (suit is specified using one letter: ‘S’ for
spades, ‘C’ for clubs, ‘D’ for diamonds, ‘H’ for hearts).

The second line contains n1 card descriptions — the cards of the first player. Each card is specified by
its rank (‘6’. . . ‘9’, ‘T’ for 10, ‘J’ for Jack, ‘Q’ for Queen, ‘K’ for King, ‘A’ for Ace) followed by its suit.
The third line contains n2 card descriptions — the cards of the covering player. The first player is the
starting player in the first round.

All cards in players’ hands are different.

Output
Output “FIRST” if the first player wins the game, or “SECOND” if the second player does.

Page 9 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Sample input and output

fool.in fool.out
2 2 S
KC AD
6S 7S

SECOND

2 2 D
KC AD
6S 7S

FIRST

4 5 C
AS 6S 7S 8S
9S TS JS QS KS

SECOND

3 2 C
6H JS JD
AD 6C

FIRST

Page 10 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem G. Graveyard

Input file: graveyard.in
Output file: graveyard.out

Programming contests became so popular in the year 2397 that the governor of New Earck — the largest
human-inhabited planet of the galaxy — opened a special Alley of Contestant Memories (ACM) at the
local graveyard. The ACM encircles a green park, and holds the holographic statues of famous contestants
placed equidistantly along the park perimeter. The alley has to be renewed from time to time when a
new group of memorials arrives.

When new memorials are added, the exact place for each can be selected arbitrarily along the ACM, but
the equidistant disposition must be maintained by moving some of the old statues along the alley.

Surprisingly, humans are still quite superstitious in 24th century: the graveyard keepers believe the
holograms are holding dead people souls, and thus always try to renew the ACM with minimal possible
movements of existing statues (besides, the holographic equipment is very heavy). Statues are moved
along the park perimeter. Your work is to find a renewal plan which minimizes the sum of travel distances
of all statues. Installation of a new hologram adds no distance penalty, so choose the places for newcomers
wisely!

Input
Input file contains two integer numbers: n — the number of holographic statues initially located at the
ACM, and m – the number of statues to be added (2 ≤ n ≤ 1000, 1 ≤ m ≤ 1000). The length of the
alley along the park perimeter is exactly 10 000 feet.

Output
Write a single real number to the output file — the minimal sum of travel distances of all statues (in
feet). The answer must be precise to at least 4 digits after decimal point.

Sample input and output

graveyard.in graveyard.out
2 1 1666.6667

2 3 1000.0

3 1 1666.6667

10 10 0.0

Pictures show the first three examples. Marked circles denote original statues, empty circles denote new
equidistant places, arrows denote movement plans for existing statues.

Page 11 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem H. Hard Life
Input file: hard.in
Output file: hard.out

John is a Chief Executive Officer at a privately owned medium size company. The owner of the company
has decided to make his son Scott a manager in the company. John fears that the owner will ultimately
give CEO position to Scott if he does well on his new manager position, so he decided to make Scott’s
life as hard as possible by carefully selecting the team he is going to manage in the company.

John knows which pairs of his people work poorly in the same team. John introduced a hardness factor
of a team — it is a number of pairs of people from this team who work poorly in the same team divided
by the total number of people in the team. The larger is the hardness factor, the harder is this team to
manage. John wants to find a group of people in the company that are harderst to manage and make it
Scott’s team. Please, help him.

1 2

3 4

5

In the example on the picture the hardest team consists of people 1, 2, 4, and 5. Among 4 of them 5
pairs work poorly in the same team, thus hardness factor is equal to 5

4 . If we add person number 3 to
the team then hardness factor decreases to 6

5 .

Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 1000). Here
n is a total number of people in the company (people are numbered from 1 to n), and m is the number
of pairs of people who work poorly in the same team. Next m lines describe those pairs with two integer
numbers ai and bi (1 ≤ ai, bi ≤ n, ai 6= bi) on a line. The order of people in a pair is arbitrary and no
pair is listed twice.

Output
Write to the output file an integer number k (1 ≤ k ≤ n) — the number of people in the hardest team,
followed by k lines listing people from this team in ascending order. If there are multiple teams with the
same hardness factor then write any one.

Sample input and output

hard.in hard.out
5 6
1 5
5 4
4 2
2 5
1 2
3 1

4
1
2
4
5

4 0 1
1

Note, that in the last example any team has hardness factor of zero, and any non-empty list of people is
a valid answer.

Page 12 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem I. Interconnect
Input file: interconnect.in
Output file: interconnect.out

There are two serious problems in the Kingdom of Lipshire: the roads and the fools who build them.
Once upon a time, the King of Lipshire has decided to improve the road system because some roads
became completely impassable — it was easier to travel cross-country instead of using those roads.

By King’s decree, new roads are to be built in Lipshire. Of course, the new road system must interconnect
all towns, i. e. there must be a path connecting any two towns of Lipshire.

The road administration of Lipshire has resources to build exactly one road per year. Unfortunately, the
fools who build these roads are completely out of control. So, regardless of the orders given, the fools
randomly select two different towns a and b and build a road between them, even when those towns are
already connected by a road. All possible choices are equiprobable. The road is build in such a manner
that the only points where a traveler can leave it are the towns connected by this road. The only good
thing is that all roads are bidirectional.

The King knows about the problem, but he cannot do anything about it. The only thing King needs to
know is the expected number of years to wait before the road system of Lipshire becomes interconnected.
He asked you to provide this information.

Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 30, 0 ≤ m ≤ 1 000) — the number of
towns in Lipshire, and the number of roads which are still good. The following m lines describe roads,
one per line. Each road is described with two endpoints — two integer numbers ui and vi (1 ≤ ui, vi ≤ n,
ui 6= vi). There can be multiple roads between two towns, but the road from a town to itself is not
allowed.

Output
Output the expected number of years to wait for the interconnected road system. If the system is already
interconnected, output zero as an answer. Output the number with at least six precise digits after the
decimal point.

Sample input and output

interconnect.in interconnect.out
2 1
1 2

0.0

4 2
1 2
3 4

1.5

Page 13 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem J. Java vs C++
Input file: java c.in
Output file: java c.out

Apologists of Java and C++ can argue for hours proving each other that their programming language is
the best one. Java people will tell that their programs are clearer and less prone to errors, while C++
people will laugh at their inability to instantiate an array of generics or tell them that their programs
are slow and have long source code.

Another issue that Java and C++ people could never agree on is identifier naming. In Java a multiword
identifier is constructed in the following manner: the first word is written starting from the small letter,
and the following ones are written starting from the capital letter, no separators are used. All other
letters are small. Examples of a Java identifier are javaIdentifier, longAndMnemonicIdentifier,
name, nEERC.

Unlike them, C++ people use only small letters in their identifiers. To separate words they use underscore
character ‘ ’. Examples of C++ identifiers are c identifier, long and mnemonic identifier, name
(you see that when there is just one word Java and C++ people agree), n e e r c.

You are writing a translator that is intended to translate C++ programs to Java and vice versa. Of
course, identifiers in the translated program must be formatted due to its language rules — otherwise
people will never like your translator.

The first thing you would like to write is an identifier translation routine. Given an identifier, it would
detect whether it is Java identifier or C++ identifier and translate it to another dialect. If it is neither,
then your routine should report an error. Translation must preserve the order of words and must only
change the case of letters and/or add/remove underscores.

Input
The input file consists of one line that contains an identifier. It consists of letters of the English alphabet
and underscores. Its length does not exceed 100.

Output
If the input identifier is Java identifier, output its C++ version. If it is C++ identifier, output its Java
version. If it is none, output “Error!” instead.

Sample input and output

java c.in java c.out
long and mnemonic identifier longAndMnemonicIdentifier

anotherExample another example

i i

bad Style Error!

Page 14 of 15

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem K. Kickdown
Input file: kickdown.in
Output file: kickdown.out

A research laboratory of a world-leading automobile company has received an order to create a special
transmission mechanism, which allows for incredibly efficient kickdown — an operation of switching to
lower gear. After several months of research engineers found that the most efficient solution requires
special gears with teeth and cavities placed non-uniformly. They calculated the optimal flanks of the
gears. Now they want to perform some experiments to prove their findings.

The first phase of the experiment is done with planar toothed sections, not round-shaped gears. A section
of length n consists of n units. The unit is either a cavity of height h or a tooth of height 2h. Two sections
are required for the experiment: one to emulate master gear (with teeth at the bottom) and one for the
driven gear (with teeth at the top).

There is a long stripe of width 3h in the laboratory and its length is enough for cutting two engaged
sections together. The sections are irregular but they may still be put together if shifted along each
other.

The stripe is made of an expensive alloy, so the engineers want to use as little of it as possible. You need
to find the minimal length of the stripe which is enough for cutting both sections simultaneously.

Input
There are two lines in the input file, each contains a string to describe a section. The first line describes
master section (teeth at the bottom) and the second line describes driven section (teeth at the top). Each
character in a string represents one section unit — 1 for a cavity and 2 for a tooth. The sections can not
be flipped or rotated.

Each string is non-empty and its length does not exceed 100.

Output
Write a single integer number to the output file — the minimal length of the stripe required to cut off
given sections.

Sample input and output
kickdown.in kickdown.out

2112112112
2212112

10

12121212
21212121

8

2211221122
21212

15

Page 15 of 15

