
ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem A. Area 51
Input file: area.in
Output file: area.out

Michael and Nick are living near the famous top-secret “Area 51” facility. The facility is enclosed by a
fence and is so large that for the purpose of this problem we consider the fence being a line that stretches
infinitely into both directions.

Only extremely brave boys are not scared to go to the fence and peek at the facility. Nick is among the
brave ones. He once came to the fence and saw a number of chimneys with distinct shapes. As a proof
of his bravery he tells everybody what chimneys he saw from his left to his right.

Michael’s father is working at “Area 51” and has a facility’s map at his home. Michael found this map and
he can now verify Nick’s claim of being near the facility’s fence. However, it turns out to be complicated,
and your task is to write a program to perform this verification.

On a map distinctly shaped chimneys are denoted by capital letters from A to Z. Each letter denotes
a distinct shape, but chimneys with this shape can appear more than once on a map. The map uses
Cartesian coordinate system oriented so that the fence is Ox axis and all chimneys are located on a
half-plane with a positive y coordinate. All chimneys are considered to be points (their sizes and actual
geometrical shapes are ignored for the purpose of this problem).

Nick claims that he looked from a point on the fence where no two chimneys were on the same line of his
sight (a line that originates from his point of view). It means that at the point he looked from, all the
chimneys he saw had a well-defined order from left to right.

Michael have already made a preliminary verification of Nick’s claim. He made sure that the number
of distinctly shaped chimneys matches their number on the map. Now Michael needs to perform a final
verification — to get a list of x coordinates on a fence (if any) where the corresponding arrangement of
chimneys could be seen from. This information shall be presented as an ordered list of open intervals
(a1, b1), (a2, b2), ..., (an, bn), so that a1 < b1 ≤ a2 < b2 ≤ ... ≤ an < bn. Asterisk symbol (“∗”) is used in
place of a1 and/or bn to denote interval that extends to infinity on the left or on the right correspondingly.
Note, that bi = ai+1 = x in case where Nick could not have been at the point x on a fence, because he
would have seen more than one chimney on a single line of his sight, but being to the left or to the right
of x yields the order of chimneys that he saw.

Input
The first line of the input file contains an integer number m — the number of chimneys at the “Area 51”
facility (1 ≤ m ≤ 100). The second line of the input file contains a string of m letters from A to Z that
describe the chimneys that Nick saw from his left to his right. A single letter can be used more than
once (if Nick saw the same shape more than once). Then follow m lines that describe chimneys on the
map. Each line contains three tokens separated by spaces — chimney shape letter (from A to Z), and
two integers xi and yi — chimney coordinates (−100 ≤ xi ≤ 100, 0 < yi ≤ 100). On these m lines letters
appear in arbitrary order, but each letter from A to Z appears the same number of times as on the second
line of the input file. No two chimneys have the same coordinates.

Output
Write to the first line of the output file a single integer number n — the number of intervals that describe
x coordinates on a fence where Nick could have seen the corresponding arrangement of chimneys from.
Write to the second line of the output file 2n numbers a1, b1, ... , an, bn using “∗” instead of a number
a1 and/or bn to denote infinity. Numbers must be precise up to 10−6.

Page 1 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Sample input and output

area.in area.out
4
CDDC
C 0 7
D 4 5
C -2 1
D -2 3

3
* -11 -11 -3.5 14 *

4
DCCD
C 0 7
D 4 5
C -2 1
D -2 3

2
-3.5 -2.333333 -2.333333 -2

4
DCDC
C 0 7
D 4 5
C -2 1
D -2 3

0

The picture below shows that if the boy looks from the point x = −7 he sees the chimneys in the following
order: C, D, D, C. It is so for any point from the set (−∞,−11) ∪ (−11,−3.5) ∪ (14,+∞) — the first
example from the problem statement.

Area 51

C

D

C

D

−7

Page 2 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem B. Brackets Removal
Input file: brackets.in
Output file: brackets.out

Let us consider arithmetic expressions that consist of variables denoted by lower-case letters “a” to “z”;
four binary arithmetic operations: addition (“+”), subtraction (“−”), multiplication (“∗”), and division
(“/”); opening (“(”) and closing (“)”) round brackets. The normal order of precedence is used — multi-
plication and division have the highest precedence, addition and subtraction have the lowest precedence.
Operations of the same precedence are evaluated from left to right (for example a− b + c = (a− b) + c).

Thus, the grammar for the expressions is the following:

〈expression〉 −→ 〈term〉 | 〈expression〉+ 〈term〉 | 〈expression〉 − 〈term〉
〈term〉 −→ 〈factor〉 | 〈term〉 ∗ 〈factor〉 | 〈term〉 / 〈factor〉
〈factor〉 −→ 〈variable〉 | (〈expression〉)

〈variable〉 −→ a | b | . . . | z

Your task is to rewrite the given expression so that its semantics is not changed, but the resulting
expression has the minimal number of round brackets.

You can remove any excessive brackets that do not change the order of evaluation, for example

(a + b) + (c) ⇒ a + b + c,

(a ∗ b)/(c) ⇒ a ∗ b/c,

and you can rewrite expressions using the following rules:

• If A and B are arbitrary expressions, you can change A + (B) to A + B, for example

a− g/h + (b + c− d + e ∗ (f + h− i)) ⇒ a− g/h + b + c− d + e ∗ (f + h− i).

• If A and B are arbitrary expressions, you can change A− (B) to A−B′ where B′ is obtained from
B by replacing all top-level “+” operations to “−” operations and vice versa, for example

a− g/h− (b + c− d + e ∗ (f + h− i)) ⇒ a− g/h− b− c + d− e ∗ (f + h− i)).

• If A and B are arbitrary terms, you can change A ∗ (B) to A ∗B, for example

x/(y + z) ∗ (a ∗ (b− c)/d/(e/f)) ⇒ x/(y + z) ∗ a ∗ (b− c)/d/(e/f).

• If A and B are arbitrary terms, you can change A/(B) to A/B′, where B′ is obtained from B by
replacing all top-level “∗” operations to “/” operations and vice versa, for example

x/(y + z)/(a ∗ (b− c)/d/(e/f)) ⇒ x/(y + z)/a/(b− c) ∗ d ∗ (e/f).

You can think about these transformations as ones that only use “+” and “∗” associativity, the fact that
“−” is the reverse operation to “+”, “/” is the reverse operation to “∗”, and nothing else.

You can apply the described transformations and remove excessive brackets as many times as you need
to get the expression with the minimal number of round brackets.

Page 3 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Input
The input file contains a single line with the expression. Expression does not have any leading, trailing,
or inner spaces and consists of at most 1000 characters.

Output
Write to the output file a single line with the same expression that is rewritten with the minimal number
of round brackets. Do not write any spaces.

Sample input and output

brackets.in
((a-b)-(c-d)-(z*z*g/f)/(p*(t))*((y-u)))

brackets.out
a-b-c+d-z*z*g/f/p/t*(y-u)

Page 4 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem C. Cactus
Input file: cactus.in
Output file: cactus.out

Cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively
cactus is a generalization of a tree where some cycles are allowed. Your task first is to verify if the given
graph is a cactus or not. Important difference between a cactus and a tree is that a cactus can have
a number of spanning subgraphs that are also cactuses. The number of such subgraphs (including the
graph itself) determines cactusness of a graph (this number is one for a cactus that is just a tree). The
cactusness of a graph that is not a cactus is considered to be zero.

1

2

3

4

5

6

7

8

9

10 11

1213

14

1

2

3

4

5

6

7

8

9

10 1

2

3

4

5

A cactus Not a cactus Not a cactus

The first graph on the picture is a cactus with cactusness 35. The second graph is not a cactus because
edge (2, 3) lies on two cycles. The third graph is not a cactus because it is not connected.

Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 20000, 0 ≤ m ≤ 1000).
Here n is the number of vertices in the graph. Vertices are numbered from 1 to n. Edges of the graph
are represented by a set of edge-distinct paths, where m is the number of such paths.

Each of the following m lines contains a path in the graph. A path starts with an integer number ki

(2 ≤ ki ≤ 1000) followed by ki integers from 1 to n. These ki integers represent vertices of a path. Path
can go to the same vertex multiple times, but every edge is traversed exactly once in the whole input file.
There are no multiedges in the graph (there is at most one edge between any two vertices).

Output
Write to the output file a single integer number — the cactusness of the given graph. Note that cactusness
can be quite a large number.

Sample input and output
cactus.in cactus.out

14 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
2 2 14

35

10 2
7 1 2 3 4 5 6 1
6 3 7 8 9 10 2

0

5 1
4 1 2 3 4

0

Page 5 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem D. Double Patience
Input file: double.in
Output file: double.out

Double Patience is a single player game played with a standard 36-card deck. The cards are shuffled and
laid down on a table in 9 piles of 4 cards each, faces up.

After the cards are laid down, the player makes turns. In a turn he can take top cards of the same rank
from any two piles and remove them. If there are several possibilities, the player can choose any one. If
all the cards are removed from the table, the player wins the game, if some cards are still on the table
and there are no valid moves, the player loses.

George enjoys playing this patience. But when there are several possibilities to remove two cards, he
doesn’t know which one to choose. George doesn’t want to think much, so in such case he just chooses a
random pair from among the possible variants and removes it. George chooses among all possible pairs
with equal probability.

For example, if the top cards are KS, KH, KD, 9H, 8S, 8D, 7C, 7D, and 6H, he removes any particular
pair of (KS, KH), (KS, KD), (KH, KD), (8S, 8D), and (7C, 7D) with the equal probability of 1/5.

Once George’s friend Andrew came to see him and noticed that he sometimes doesn’t act optimally.
George argued, that it is not important — the probability of winning any given patience with his strategy
is large enough.

Help George to prove his statement — given the cards on the table in the beginning of the game, find
out what is the probability of George winning the game if he acts as described.

Input
The input file contains nine lines. Each line contains the description of four cards that form a pile in the
beginning of the game, from the bottom card to the top one.

Each card is described with two characters: one for rank, one for suit. Ranks are denoted as ‘6’ for six,
‘7’ for seven, ‘8’ for eight, ‘9’ for nine, ‘T’ for ten, ‘J’ for jack, ‘Q’ for queen, ‘K’ for king, and ‘A’ for ace.
Suits are denoted as ‘S’ for spades, ‘C’ for clubs, ‘D’ for diamonds, and ‘H’ for hearts. For example, “KS”
denotes the king of spades.

Card descriptions are separated from each other by one space.

Output
Output one real number — the probability that George wins the game if he plays randomly. Your answer
must be accurate up to 10−6.

Sample input and output

double.in double.out
AS 9S 6C KS
JC QH AC KH
7S QD JD KD
QS TS JS 9H
6D TD AD 8S
QC TH KC 8D
8C 9D TC 7C
9C 7H JH 7D
8H 6S AH 6H

0.589314

Page 6 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem E. Exploring Pyramids

Input file: exploring.in
Output file: exploring.out

Archaeologists have discovered a new set of hidden caves in one of the Egyptian pyramids. The decryption
of ancient hieroglyphs on the walls nearby showed that the caves structure is as follows. There are n
caves in a pyramid, connected by narrow passages, one of the caves is connected by a passage to the
outer world. The system of the passages is organized in such a way, that there is exactly one way to get
from outside to each cave along passages. All caves are located in the basement of the pyramid, so we
can consider them being located in the same plane. Passages do not intersect. Each cave has its walls
colored in one of several various colors.

The scientists have decided to create a more detailed description of the caves, so they decided to use an
exploring robot. The robot they are planning to use has two types of memory — the output tape, which
is used for writing down the description of the caves, and the operating memory organized as a stack.

The robot first enters the cave connected to the outer world along the passage. When it travels along any
passage for the first time, it puts its description on the top of its stack. When the robot enters any cave,
it prints the color of its walls to its output tape. After that it chooses the leftmost passage among those
that it has not yet travelled and goes along it. If there is no such passage, the robot takes the passage
description from the top of its stack and travels along it in the reverse direction. The robot’s task is over
when it returns to the outside of the pyramid. It is easy to see that during its trip the robot visits each
cave at least once and travels along each passage exactly once in each direction.

The scientists have sent the robot to its mission. After it returned they started to study the output
tape. What a great disappointment they have had after they have understood that the output tape does
not describe the cave system uniquely. Now they have a new problem — they want to know how many
different cave systems could have produced the output tape they have. Help them to find that out.

Since the requested number can be quite large, you should output it modulo 1 000 000 000. Please note,
that the absolute locations of the caves are not important, but their relative locations are important, so
the caves (c) and (d) on the picture below are considered different.

A

B

A

B

A

B

AA

A

BB

A

A

BB

A

A

BB

B

(a) (b) (c) (d) (e)

Input
The input file contains the output tape that the archaeologists have. The output tape is the sequence of
colors of caves in order the robot visited them. The colors are denoted by capital letters of the English
alphabet. The length of the tape does not exceed 300 characters.

Output
Output one integer number — the number of different cave systems (modulo 1 000 000 000) that could
produce the output tape.

Sample input and output
exploring.in exploring.out

ABABABA 5

AB 0

Page 7 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem F. Feel Good
Input file: feelgood.in
Output file: feelgood.out

Bill is developing a new mathematical theory for human emotions. His recent investigations are dedicated
to studying how good or bad days influent people’s memories about some period of life.

A new idea Bill has recently developed assigns a non-negative integer value to each day of human life.
Bill calls this value the emotional value of the day. The greater the emotional value is, the better the day
was. Bill suggests that the value of some period of human life is proportional to the sum of the emotional
values of the days in the given period, multiplied by the smallest emotional value of the day in it. This
schema reflects that good on average period can be greatly spoiled by one very bad day.

Now Bill is planning to investigate his own life and find the period of his life that had the greatest value.
Help him to do so.

Input
The first line of the input file contains n — the number of days of Bill’s life he is planning to investigate
(1 ≤ n ≤ 100 000). The rest of the file contains n integer numbers a1, a2, . . . an ranging from 0 to 106 —
the emotional values of the days. Numbers are separated by spaces and/or line breaks.

Output
On the first line of the output file print the greatest value of some period of Bill’s life.

On the second line print two numbers l and r such that the period from l-th to r-th day of Bill’s life
(inclusive) has the greatest possible value. If there are multiple periods with the greatest possible value,
then print any one of them.

Sample input and output

feelgood.in feelgood.out
6
3 1 6 4 5 2

60
3 5

Page 8 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem G. Guards
Input file: guards.in
Output file: guards.out

Agency of Criminal Matters (ACM) provides protection for corporate offices. The agency employs security
guards that work in 12 hours shifts. Every 24 hours day consists of a 12 hours daylight shift and 12 hours
nighttime shift (day starts with a daylight shift).

Security guards are hired to work on different schedules. Some schedules are simply periodic (certain
pattern repeats in a specified number of days), while others are weekly (with a standard 7 days week) or
depend on the day of the week. For this purpose Monday through Friday are considered to be workdays;
Saturday and Sunday are considered to be weekends.

Each security guard works on one of the following four schedules:

1. Day of work (daylight and nighttime shifts) and two days (daylight and nighttime) of rest – work
every third day.

1 2 3

Work on any day of week Monday through Sunday

2. Only daylight shifts on 5 workdays of a week (no work in nighttime and weekends).

Mon Tue Wed Thu Fri Sat Sun

Work on the corresponding day of week

3. Day of work (daylight and nighttime), day of rest (daylight and nighttime), daylight shift of work,
nighttime of rest, and one more day (daylight and nighttime) of rest — 3 shifts of work every 4
days.

1 2 3 4

Work on any day of week Monday through Sunday

4. Day of work (daylight and nighttime), day of rest (daylight and nighttime), day of work only during
daylight (rest during nighttime), day of work (daylight and nighttime), day of rest (daylight and
nighttime); but if any daylight shift falls on the weekend then it is cancelled — 3 daylight shifts
and 2 nighttime shifts every 5 days with the exception of weekends (where only nighttime shifts are
possible).

1 2 3 4 5

Work on any day of week Monday through Sunday
Work only on workdays — Monday through Friday

ACM has to provide protection for a location based on the following requirements. There has to be at
least a certain number of guards during daylight shifts on workdays, at least a certain number of guards
during daylight shifts on weekends, and at least a certain number of guards during nighttime shifts (it
does not matter whether it is a workday or a weekend).

As an additional requirement (for simplicity of planning) the schedule of protection for every location has
to be regular. In a regular schedule there is a fixed number of guards that work on any particular schedule
during every daylight workday shift, nighttime workday shift, daylight weekend shift, and nighttime

Page 9 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

weekend shift. For example, if 4 guards on the 1st schedule work on some daylight workday shift, then 4
guards on the 1st schedule work on all daylight workday shifts (they might be different persons, though).

Your task is to determine the minimal number of guards that have to be hired for protection of the
specific location given its requirements.

Input
The input file consists of a line with three integer numbers — n1, n2, and n3 (1 ≤ n1, n2, n3 ≤ 1000). Here
n1 is the minimum required number of guards during daylight shifts on workdays, n2 is the minimum
required number of guards during daylight shifts on weekends, and n3 is the minimum required number
of guards during nighttime shifts.

Output
Write to the output file a single line with four integer numbers — m1, m2, m3, and m4. Here mi is the
number of security guards working on i-th schedule that are needed to establish security of a location
with the given requirements. You have to write an answer that requires minimal number of guards in
total, choosing any answer among those.

Sample input and output

guards.in guards.out
100 99 99 285 0 8 5

100 60 40 0 25 120 25

Page 10 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem H. Hardwood Cutting

Input file: hardwood.in
Output file: hardwood.out

John owns a furniture workshop. His clients are very rich people, so they often order furniture suites
made of precious sorts of hardwood.

Recently John has got a series of orders from his clients, so now he needs to cut a hardwood board to
several pieces. The board has a rectangular form of m × n feet. John has marked the outlines of the
pieces to cut out on the board, and is planning to use his circular saw to cut it.

However, there is a little problem. Due to the construction of the circular saw, it is only possible to make
straight cuts starting at the edge of the board. Although, after cutting away a part of the board John
can take it away and make a cut from the new part of the edge, some pieces still cannot be separated
using a circular saw. For example, pieces ‘C’ and ‘D’ on the picture below cannot be separated, neither
can ‘E’ and ‘Z’. To deal with such situations John will need to use his fret-saw to finish the cutting.

Now John wonders what is the maximal number of parts he can cut the board to with his circular saw,
so that he needs less work to do with his fret-saw. Help him to find that out. After cutting some part
away John can rearrange the parts in any way he likes.

Input
The first line of the input file contains two integer numbers m and n — the sizes of the board
(1 ≤ m,n ≤ 20).

The following m lines contain n characters each and describe the marking of the board. Each unit square
foot of the initial board is marked with some English letter or digit. Unit squares that belong to the
same piece are marked with the same character. All unit squares that are marked with some character
form an edge-connected piece of hardwood. Capital and lower-case letters are considered different.

Output
Output the number of parts that John can cut the board to with his circular saw.

Sample input and output
hardwood.in hardwood.out

6 7
CCCDDAA
CCDDDAa
EEEEEEE
EEEZEEE
EEEZEGG
EEEZEGG

5

C D A
a

E Z
G

C D A
a

E Z
G

C D

A
a

E Z

G

A

a

Page 11 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem I. IP Networks
Input file: ip.in
Output file: ip.out

Alex is administrator of IP networks. His clients have a bunch of individual IP addresses and he decided
to group all those IP addresses into the smallest possible IP network.

Each IP address is a 4-byte number that is written byte-by-byte in a decimal dot-separated notation
“byte0.byte1.byte2.byte3” (quotes are added for clarity). Each byte is written as a decimal number from
0 to 255 (inclusive) without extra leading zeroes.

IP network is described by two 4-byte numbers — network address and network mask. Both network
address and network mask are written in the same notation as IP addresses.

In order to understand the meaning of network address and network mask you have to consider their
binary representation. Binary representation of IP address, network address, and network mask consists
of 32 bits: 8 bits for byte0 (most significant to least significant), followed by 8 bits for byte1, followed by
8 bits for byte2, and followed by 8 bits for byte3.

IP network contains a range of 2n IP addresses where 0 ≤ n ≤ 32. Network mask always has 32− n first
bits set to one, and n last bits set to zero in its binary representation. Network address has arbitrary
32 − n first bits, and n last bits set to zero in its binary representation. IP network contains all IP
addresses whose 32 − n first bits are equal to 32 − n first bits of network address with arbitrary n last
bits. We say that one IP network is smaller than the other IP network if it contains fewer IP addresses.

For example, IP network with network address 194.85.160.176 and network mask 255.255.255.248 contains
8 IP addresses from 194.85.160.176 to 194.85.160.183 (inclusive).

Input
The first line of the input file contains a single integer number m (1 ≤ m ≤ 1000). The following m lines
contain IP addresses, one address on a line. Each IP address may appear more than once in the input
file.

Output
Write to the output file two lines that describe the smallest possible IP network that contains all IP
addresses from the input file. Write network address on the first line and network mask on the second
line.

Sample input and output

ip.in ip.out
3
194.85.160.177
194.85.160.183
194.85.160.178

194.85.160.176
255.255.255.248

Page 12 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem J. Joseph’s Problem

Input file: joseph.in
Output file: joseph.out

Joseph likes taking part in programming contests. His favorite problem is, of course, Joseph’s problem.
It is stated as follows.

There are n persons numbered from 0 to n − 1 standing in a circle. The person number
k, counting from the person number 0, is executed. After that the person number k of the
remaining persons is executed, counting from the person after the last executed one. The
process continues until only one person is left. This person is a survivor. The problem is,
given n and k detect the survivor’s number in the original circle.

Of course, all of you know the way to solve this problem. The solution is very short, all you need is one
cycle:

r := 0;
for i from 1 to n do

r := (r + k) mod i;
return r;

Here “x mod y” is the remainder of the division of x by y

But Joseph is not very smart. He learned the algorithm, but did not learn the reasoning behind it. Thus
he has forgotten the details of the algorithm and remembers the solution just approximately.

He told his friend Andrew about the problem, but claimed that the solution can be found using the
following algorithm:

r := 0;
for i from 1 to n do

r := r + (k mod i);
return r;

Of course, Andrew pointed out that Joseph was wrong. But calculating the function Joseph described is
also very interesting.

Given n and k, find
n∑

i=1
(k mod i).

Input
The input file contains n and k (1 ≤ n, k ≤ 109)

Output
Output the sum requested.

Sample input and output

joseph.in joseph.out
5 3 7

Page 13 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem K. Knockdown
Input file: knockdown.in
Output file: knockdown.out

The Evil Empire is devising a plan to destroy the world. This plan is called “Operation Knockdown”.
The plan is to place a number of high-yield nuclear bombs in different places around the world, so that
their simultaneous detonation will destroy everything on the planet. For the purpose of planning this
operation, bombs have destruction distance — the distance from the point of bomb’s detonation to all
the places where everything is considered destroyed.

Places for the bombs have been already selected. Now the Evil Empire wants to minimize the cost
of production for the bombs. It is expensive to design atomic bombs tailored for different destruction
distances, so the idea is to design a bomb with a specific destruction distance and to produce bombs
according to this design for all the selected places. The problem is to find the minimal required destruction
distance for the bomb design, so that destruction of the whole world is ensured.

λ

φ

For this problem the world is modeled as a sphere of a unit radius. The coordinates of the selected
points for the bombs are specified in geographic coordinate system with latitude φ (−90◦ < φ < 90◦) and
longitude λ (−180◦ < λ ≤ 180◦). Latitude is the angle between a point and the equator, and longitude
is the angle between a point and the prime meridian. The bombs are never placed on the poles, so their
latitude is always less than 90 degrees by its absolute value.

Distances for destruction purposes are measured on the sphere. For example, the distance between the
poles is exactly π. The world is considered destroyed if the distance from any point on the sphere to the
closest bomb is less or equal to the destruction radius.

Input
The first line of the input file contains a single integer number n (1 ≤ n ≤ 20) — the number of the
bombs. The following n lines describe the places of the bombs. Each line contains two integer numbers
φi and λi (−90 < φi < 90, −180 < λi ≤ 180) — latitude and longitude of the bomb. No two bombs are
situated in the same place.

Output
Write to the output file a single number — the minimal destruction radius of the bombs that ensures
destruction of the whole world. The answer must be precise up to 10−6.

Sample input and output

knockdown.in knockdown.out
4
59 30
53 83
41 69
41 41

2.864479

Page 14 of 14

